AWS Mobile

Developer Guide

. __|
AWS Mobile: Developer Guide
Copyright © 2018 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

AWS Mobile Developer Guide

Amazon's trademarks and trade dress may not be used in connection with any product or service that is not Amazon's, in any manner
that is likely to cause confusion among customers, or in any manner that disparages or discredits Amazon. All other trademarks not
owned by Amazon are the property of their respective owners, who may or may not be affiliated with, connected to, or sponsored by
Amazon.

AWS Mobile Developer Guide

Table of Contents

WAL iS AWS MODILE? ..oeeniiiiiiii i ettt ettt ettt et ettt eaea et eaea et e aesssssnsenenenenenererererens 1
Cloud enable your app iN MINULESo.uiiniiiiiiei ettt et et et et et et et er et enaeaneaaennenns 1
PN T [oY T I o Lo 1O L ST PPOS 2
[T A =] & (=T« I PPPOS 2
(0 1= V=1 PPt 2

Y=L O oI oYUl 2 - Tl (= [« PPN 2
(o] aT g [Tl o B o 1N [l = F- Tl (<] o Lo N 7

N Y =T o L PP PPN 12

A ANGLYEICS . ettt ettt et a e e e 13

A USEE SIGN=iN oeiiiiiiiie ittt et ettt et et et et et e e et e e et e e e e e e e e e e e en 20

Add PUSH NOTIICAIONS ..ouieiniiii e et 43

FiXe o I\ 1Y@ 1 I D F=1 =] o T= [SIS 54

Add USEI File StOIage ..euiiniiiiiniiiiei ettt ettt ettt ettt et et et et et et et eaaeaneeeaneaneanaanns 66

Ve [« I @l oYU el I Yo | APPSR PRNN 75

e [o l 7 T=T - Te | T T O PP PSP PP PP PPPRPPPPRN 83

Add ConVversationNal BOTSviiiiiiiii e aans 84

B LT do] o = PP 90
[\ o] d=E Yoo I F U o] o -1 APPSR 90
FANa[a [o] Ta N\ (o] 4L AN o] o J PP 90

([0 R N\ (0] =T Y o] o J PPN 114

03T I T 132
[[T Y] QY =1 1] o E PP 133

User Sign-in (AMAazon COGNIt0)cuueruriinieuntiieiinetieeteete et eet et etteeteetnseensenneanneeneesneesneees 146

User File Storage (AMAzomn S3) ... eiue it eie et et e et et e ae et e et e et e et eatneaaneansennsannns 182
NoSQL Database (AMazon DYNAmMODB)c..viuuiiuriinieiieeiieei et et etieeie et eeeneaineaneeneeaneenneens 232
Serverless Code (AWS Lambda)veieiiiiiiie ettt e e aeaas 261
Natural Language (AMAzon LEX) ...euueiuneiueiieeiieeieeieei et etieetieernsernsenneenneeieetneesnereneeensannns 272
Speech to Text (AMAzZoN POLLY) ...ouuiieiiiiiie it e e et e e e ee e e s eaneeanas 280

Data Streaming (AMAazon KINESIS)euuiiuniiueiieeieei ettt et e e et e et e et eeieaneeaneeansenneenneannes 281

Data SYyNc (AWS COGNItO SYNC) ..evuuiiniiiniiieiieeie ettt et et e te et s et s et e et eaneaneeansesnsanneannes 290
Machine Learning (Amazon Machine Learning)cc.oeeueiureinieinieinieieiineiineieeieeieeineeienenes 294
MISCEILANEOUS . ..vtitii ittt ettt ettt e e e e e e s e enenenenenerenesesesesananns 300

[S (=] {=] s [« <R PP 310
Y0 QN o I 2 0] =] = g (el <L PP 310
Amazon S3 Security CONSIAEratioNSiuuiiuiiniiiiii et et et e e e e e e e eneene 310
Amazon CloudFront Security ConsSiderationscccoveiiiiiiiiiiiniiiiier e e 311

AWS MODIle HUD REFEIENCE . ouveniiiiiee e ens 312

L] o TP 366
(T A =] =T« I PP 366
(0 1= V=1 PN 366

[= = To [T =T PP PPN 366

Set UP YOUr BACKENAoniniiiiiiii ettt e et e et e et e e et et e e ene e e e e enaans 366
ConNNECt t0 YOUIr BACKENAonininiiiiiii ettt ettt e e e e e eneneaeaeaeaeeanes 367

N Y =] o L PP PPNt 368

A ANALYEICS . eniieieieie ettt e e e eas 370

Add USEE SIGN=IN cuiiiiiiie ittt et et et e e et et et et s e et e e et s e e e s e e e ans 371

PiYe o Il N0 1Y@ 1 I D F1 =] o T= [<IN 372

Add USEr File StOIage ...euiiniiiiiniiiiiei ettt et ettt et et e et e e et s e e e s e e e e eneenen 377

Ve [« I @l oYU Tl e o | PP PP PRI 379

[(oL A o TU /T o Y o] o PPN 383

[L (=] £=] s [« <R U 385
AWS MODIlE CLI REFEIENCE . ouevieiniiei et eaens 386

AWS MoDbile CLI Credentialscuieieeiiiiiiiiii ettt e e e e e e enenererenennes 395

[LT Lt a1 = S 397

AWS Mobile Developer Guide

(1= A - o e PP PP 397
OVEIVIBW . eeiiiiteie ettt et et et ettt e et et et e et e e et et ea st e e e e et anes e ea st eneaaanetanesnanensanenanns 397
PrEIEQUISITES «eneniiinii it ettt e et e et e et et et et e e e e et a e e en e anaans 397
Set Up YOUr BACKeNdc.uiiniiiiiiiie e ettt et et e e e e e e eenne 397
Connect t0 YOUr Backendcuuiuniiiiiiiii ettt e e e e e e e e e e e e e e aans 398
NEXE SEOPS et et a e 399
Ve o Yo =1 1 o [P 399
A USEE STGN=IN oottt ettt et et et e et e et e et et e e et et e eaa e ebaeebeennae 401
Add NOSQL DaAtabase . .uiviviniiiiiiiiiiii ettt e e e enenenereaeaeaenees 402
Add USEr File STOIAge ...ueuneiiiiieei ettt e et et et et e e e eea e eaneenns 406
Ve o I @ o0 T I e o | PP 408

3] =1 =) o ol PP PPt 410

AWS Mobile Developer Guide
Cloud enable your app in minutes

What is AWS Mobile?

Cloud enable your app in minutes

AWS Mobile gives you the tools to rapidly configure and integrate the cloud backend your mobile app
needs.

Android and iOS

Get Started (p. 2) using the AWS Mobile SDK.

Supported mobile app features include:

Analytics (p. 13) - User Sign-in (p. 20) - Push Notification (p. 44) - NoSQL Database (p. 54)
- User File Storage (p. 66) - Cloud Logic - Messaging - Conversational Bots (p. 84) - Hosting and
Streaming

AWS Mobile Hub lets you configure powerful backend services using a console.

Web and React Native

Get started with Web (p. 366) or React Native (p. 397) using the AWS Mobile CLI.

Supported mobile app features include:

Web - Analytics (p. 370) - User Sign-in (p. 371) - NoSQL Database (p. 372) - User File
Storage (p. 377) - Cloud Logic (p. 379)

React Native Analytics (p. 399) - User Sign-in (p. 401) - NoSQL Database (p. 402) - User File
Storage (p. 406) - Cloud Logic (p. 408)

Behind the scenes AWS Mobile Hub lets you configure powerful backend services from the command
line with no AWS expertise needed.

Learn how its easy integrate your services by trying an AWS Mobile tutorial (p. 90).

http://docs.aws.amazon.com/aws-mobile/latest/developerguide/add-aws-mobile-cloud-logic.html#connect-to-your-backend
http://docs.aws.amazon.com/aws-mobile/latest/developerguide/add-aws-mobile-messaging.html#connect-to-your-backend
https://console.aws.amazon.com/mobilehub/
https://console.aws.amazon.com/mobilehub/

AWS Mobile Developer Guide
Get Started

AWS Mobile for Android and iOS

The AWS Mobile SDKs for Android and iOS, in combination with the AWS Mobile Hub, allow you to
quickly and easily integrate robust cloud backends into your existing mobile apps. No AWS expertise is
required to configure and begin to use features like user sign-in, database, push notifications and more.
Topics

o Get Started (p. 2)

« Tutorials (p. 90)

« AWS Mobile Android and iOS How To (p. 132)

o AWS Mobile Reference (p. 310)

Get Started

Overview

The AWS Mobile Android and iOS SDKs help you build high quality mobile apps quickly and easily. They
provide easy access to a range of AWS services, including Amazon Cognito, AWS Lambda, Amazon S3,
Amazon Kinesis, Amazon DynamoDB, Amazon Pinpoint and many more.

Set Up Your Backend

1. Sign up for the AWS Free Tier.

2. Create a Mobile Hub project by signing into the console. The Mobile Hub console provides a single
location for managing and monitoring your app's cloud resources.
To integrate existing AWS resources using the SDK directly, without Mobile Hub, see Setup Options for
Android (p. 133) or Setup Options for iOS (p. 138).

3. Name your project, check the box to allow Mobile Hub to administer resources for you and then
choose Add.

Android - Java

1. Choose Android as your platform and then choose Next.

https://console.aws.amazon.com/mobilehub/home
https://aws.amazon.com/free/
https://console.aws.amazon.com/mobilehub/

AWS Mobile Developer Guide
Set Up Your Backend

WS Mobile Hub

Select app platform

Create a project

@ Create a project Add AWS cloud services to your app. Select a platform:

@ Select app platform

{, 3; Set up your backend
"

N
[4) Connect to your backend i0s Android Web React Native

Cancel m

2. Choose the Download Cloud Config and then choose Next.
The awsconfiguration. json file you download contains the configuration of backend

resources that Mobile Hub enabled in your project. Analytics cloud services are enabled for your
app by default.

aAWS Mobile Hub

Set up your backend

Create a project

@ Create a project Add the cloud configuration file to your app
Meobile Hub generates a clowd configuration file that connects your app to your AWS
@ Select app platform backend. Download the cloud configuration file and place it in <my-awesome-
app=/app/src/main/res/frawy’
3 r backend
@ Set up your backenc Download Cloud Config

[/’4-) Connect to your backend
e

3. Add the backend service configuration file to your app.

In the Project Navigator, right-click your app's res folder, and then choose New > Directory. Type
raw as the directory name and then choose OK.

AWS Mobile Developer Guide
Set Up Your Backend

@ Android Studio File Edit View Navigate Code Analyze Refactor Build Run Tools VCS Window

[] @ -~ MyApplication [~/Downloads/MyApplication] - .../app/src/mainfjavajcom/dzmediafandroid/m
(D] 0 ¢] & % app] L
. MyApplication = = app Src main res
E i Android - € = - v g activity_mainxml € MainActivity.java
E app package com,dzmedia,android.myapplication;
& manifests 4
£ i IR, i Kotin Fie/Class
res Sample Data Directory lvit
g & Gradle Scripts Link C++ Project with Gradle . vity {
g ® File
& Cut 38X =, Scratch File TN lestate) {
= Copy C Directory
% - opy Relative Fa Vector Asset
g [V Paste £
‘Tj o Gradle Kotlin DSL Build Script
D Find in Path... 0 38F P :

From the location where configuration file, awsconfiguration. json, was downloaded in a
previous step, drag it into the res/raw folder. Android gives a resource ID to any arbitrary file
placed in this folder, making it easy to reference in the app.

Remember Every time you create or update a feature
in your Mobile Hub project, download
and integrate a new version of your
awsconfiguration. json into each app in
the project that will use the update.

Your backend is now configured. Follow the next steps at Connect to Your Backend (p. 7).
Android - Kotlin

1. Choose Android as your platform and then choose Next.

aWS Mobile Hub

Select app platform
Create a project

@ Create a project Add AWS cloud services to your app. Select a platform:

@ Select app platform

(3), Set up your backend
P

N
-\4_’,- Connect to your backend ios Android Web React Mative

Cancel m

2. Choose the Download Cloud Config and then choose Next.

The awsconfiguration. json file you download contains the configuration of backend
resources that Mobile Hub enabled in your project. Analytics cloud services are enabled for your
app by default.

AWS Mobile Developer Guide
Set Up Your Backend

aWS mobile Hub

Set up your backend
Create a project

- Add the cloud configuration file to your a)
@ Create a project ! 9 ! ¥ PR
Meobile Hub generates a cloud configuration file that connects your app to your AWS
@ Select app platform backend. Download the cloud configuration file and place it in <my-awesome-

app=/app/src/main/resfraw/
Set up your backend
@ up you o Download Cloud Config

=
{ 4) Connect to your backend
R

3. Add the backend service configuration file to your app.

In the Project Navigator, right-click your app's res folder, and then choose New > Directory. Type
raw as the directory name and then choose OK.

® Android Studio File Edit View MNavigate Code Analyze Refactor Build Run Tools VCS Window

[] @ -- MyApplication [~/Downloads/MyApplication] - .../app/src/main/java/com/dzmedia/android/m
&l D¢ G & % app ! L
. MyApplication = app Src main res
g i Android - € = - - g activity_mainxmi € MainActivity.java
E app package com,dzmedia,android.myapplication;
& manifests 4
R > miea IR i Kotin FileClass
res Sample Data Directory ity {
] 5 - - :
; Gradle Scripts Link C++ Project with Gradle 2 File
& Cut 98X =, Scratch File TN eState) {
= Copy 3®C ' Directory
- gUDY Pa::h . n tg:c Image Asset
% N opy Relative Pat C r e
g ! Paste ®’v
Q
]

Gradle Kotlin DSL Build Script

Find in Path... O ¥8F

From the location where configuration file, awsconfiguration. json, was downloaded in a
previous step, drag it into the res/raw folder. Android gives a resource ID to any arbitrary file
placed in this folder, making it easy to reference in the app.

Remember Every time you create or update a feature
in your Mobile Hub project, download
and integrate a new version of your
awsconfiguration. json into each app in
the project that will use the update.

Your backend is now configured. Follow the next steps at Connect to Your Backend (p. 7).
iOS - Swift

1. Pick iOS as your platform and choose Next.

AWS Mobile Developer Guide
Set Up Your Backend

AWS5 " Mobile Hub

Select app platform
Create a project

@ Create a project Add AWS cloud services to your app. Select a platform:

G\I Select app platform / — . ./'-.. T . .,"-. v .-'\.
- i A i A [A

P ! l I| i I| II I|

| 3] Set up your backend ‘ Js y @ y

—

(4) Connect to your backend i0S Android Web React Native

Cancel m

2. Choose the Download Cloud Config and then choose Next.
The awsconfiguration. json file you download contains the configuration of backend

resources that Mobile Hub enabled in your project. Analytics cloud services are enabled for your
app by default.

aWs Mobile Hub

Set up your backend

Create a project

- Add the cloud configuration file to r a|
@ Create a project . fguration i your app
Mobile Hub generates a cloud configuration file that connects your app to your AWS
@ Select app plathorm backend, Download the cloud configuration file and place it in folder containing info. plist
=\ Download Cloud Confi
I'\]/I Set up your backend ¥

(4 Connectt backend
onm 0 your backen Cancel m

3. Add the backend service configuration file to your app.

From your download location, place awsconfiguration. json into the folder containing your
info.plist file in your Xcode project. Select Copy items if needed and Create groups in the
options dialog. Choose Next.

Remember Every time you create or update a feature
in your Mobile Hub project, download
and integrate a new version of your
awsconfiguration. json into each app in
the project that will use the update.

Your backend is now configured. Follow the next steps at Connect to Your Backend (p. 7).

AWS Mobile Developer Guide
Connect to Your Backend

Connect to Your Backend

Android - Java

1.

Prerequisites
o Install Android Studio version 2.33 or higher.
« Install Android SDK v7.11 (Nougat), API level 25.

. Your AndroidManifest.xml must contain:

<uses-permission android:name="android.permission.INTERNET"/>
<uses-permission android:name="android.permission.ACCESS_NETWORK_STATE"/>

. Add dependencies to your app/build.gradle, then choose Sync Now in the upper right of

Android Studio. This libraries enable basic AWS functions, like credentials, and analytics.

dependencies {
implementation ('com.amazonaws:aws-android-sdk-mobile-client:2.6.+@aar"')
{ transitive = true }

}

. Add the following code to the onCreate method of your main or startup activity.

AWSMobileClient is a singleton that establishes your connection to
<problematic>|AWS|</problematic>
and acts as an interface for your services.

import com.amazonaws.mobile.client.AWSMobileClient;

public class YourMainActivity extends Activity {
@Override
protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);

AWSMobileClient.getInstance().initialize(this, new AWSStartupHandler() {

@Override
public void onComplete(AWSStartupResult awsStartupResult) {
Log.d("YourMainActivity", "AWSMobileClient is instantiated and you
are connected to AWS!");
}

}) .execute();

// More onCreate code ...

What does this do? When AWSMobileClient is initialized, it
constructs the AWSCredentialsProvider
and AWSConfiguration objects which,
in turn, are used when creating other SDK
clients. The client then makes a Sigv4 signed
network call to Amazon Cognito Federated
Identities to retrieve AWS credentials that
provide the user access to your backend
resources. When the network interaction
succeeds, the onComplete method of the
AWSStartUpHandler is called.

https://developer.android.com/studio/index.html#downloads
http://docs.aws.amazon.com/general/latest/gr/signing_aws_api_requests.html
http://docs.aws.amazon.com/cognito/latest/developerguide/cognito-identity.html
http://docs.aws.amazon.com/cognito/latest/developerguide/cognito-identity.html

AWS Mobile Developer Guide
Connect to Your Backend

Your app is now set up to interact with the AWS services you configured in your Mobile Hub project!

Choose the run icon (

<problematic>|play|</problematic>

) in Android Studio to build your app and run it on your device/emulator. Look for welcome to
AWS! in your Android Logcat output (choose View > Tool Windows > Logcat).

Optional: The following example shows how to retrieve the reference to
AWSCredentialsProvider and AWSConfiguration objects which can be used to instantiate
other SDK clients. You can use the IdentityManager to fetch the user's AWS identity id either
directly from Amazon Cognito or from the locally cached identity id value.

import com.amazonaws.auth.AWSCredentialsProvider;
import com.amazonaws.mobile.auth.core.IdentityHandler;
import com.amazonaws.mobile.auth.core.IdentityManager;
import com.amazonaws.mobile.client.AWSMobileClient;
import com.amazonaws.mobile.client.AWSStartupHandler;
import com.amazonaws.mobile.client.AWSStartupResult;
import com.amazonaws.mobile.config.AWSConfiguration;

public class YourMainActivity extends Activity {

private AWSCredentialsProvider credentialsProvider;
private AWSConfiguration configuration;

@Override
protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);

AWSMobileClient.getInstance().initialize(this, new AWSStartupHandler() {
@Override
public void onComplete(AWSStartupResult awsStartupResult) {

// Obtain the reference to the AWSCredentialsProvider and
AWSConfiguration objects

credentialsProvider =
AWSMobileClient.getInstance().getCredentialsProvider();

configuration = AWSMobileClient.getInstance().getConfiguration();

// Use IdentityManager#getUserID to fetch the identity id.
IdentityManager.getDefaultIdentityManager().getUserID(new
IdentityHandler() {

@Override
public void onIdentityId(String identityId) {
Log.d("YourMainActivity", "Identity ID = " + identityId);

// Use IdentityManager#getCachedUserID to
// fetch the locally cached identity id.
final String cachedIdentityId =

IdentityManager.getDefaultIdentityManager().getCachedUserID();

}
@Override
public void handleError(Exception exception) {
Log.d("YourMainActivity", "Error in retrieving the identity"
+ exception);
}

)i
}

}) .execute();

// .. more code

AWS Mobile Developer Guide
Connect to Your Backend

Android - Kotlin

1. Prerequisites
« Install Android Studio version 2.33 or higher.
« Install Android SDK v7.11 (Nougat), API level 25.

2. Your AndroidManifest.xml must contain:

<uses-permission android:name="android.permission.INTERNET"/>
<uses-permission android:name="android.permission.ACCESS_NETWORK_STATE"/>

3. Add dependencies to your app/build.gradle, then choose Sync Now in the upper right of
Android Studio. This libraries enable basic AWS functions, like credentials, and analytics.

dependencies {
implementation ('com.amazonaws:aws-android-sdk-mobile-client:2.6.+@aar"')
{ transitive = true }

¥

4. Add the following code to the onCreate method of your main or startup activity.
AWSMobileClient is a singleton that establishes your connection to
<problematic>|AWS|</problematic>
and acts as an interface for your services.

import com.amazonaws.mobile.client.AWSMobileClient;

class YourMainActivity : Activity() {
companion object {
private val TAG: String = this::class.java.simpleName

}

override fun onCreate(savedInstanceState: Bundle?) {
super.onCreate(savedInstanceState);

AWSMobileClient.getInstance().initialize(this) {
Log.d(TAG, "AWSMobileClient is initialized")
}.execute()

// More onCreate code...
}
}

What does this do? When AWSMobileClient is initialized, it
constructs the AWSCredentialsProvider
and AWSConfiguration objects which, in
turn, are used when creating other SDK clients.
The client then makes a Sigv4 signed network
call to Amazon Cognito Federated Identities
to retrieve AWS credentials that provide the
user access to your backend resources. When
the network interaction succeeds, the callback
(which is technically the onComplete method
of the AWSStartUpHandler) is called.

https://developer.android.com/studio/index.html#downloads
http://docs.aws.amazon.com/general/latest/gr/signing_aws_api_requests.html
http://docs.aws.amazon.com/cognito/latest/developerguide/cognito-identity.html

AWS Mobile Developer Guide
Connect to Your Backend

Your app is now set up to interact with the AWS services you configured in your Mobile Hub project!

Choose the run icon (

<problematic>|play|</problematic>

) in Android Studio to build your app and run it on your device/emulator. Look for Welcome to
AWS! in your Android Logcat output (choose View > Tool Windows > Logcat).

Optional: The following example shows how to retrieve the reference to
AWSCredentialsProvider and AWSConfiguration objects which can be used to instantiate
other SDK clients. You can use the IdentityManager to fetch the user's AWS identity id either
directly from Amazon Cognito or from the locally cached identity id value.

import com.amazonaws.auth.AWSCredentialsProvider
import com.amazonaws.mobile.auth.core.IdentityHandler
import com.amazonaws.mobile.auth.core.IdentityManager
import com.amazonaws.mobile.client.AWSMobileClient
import com.amazonaws.mobile.config.AWSConfiguration

class YourMainActivity : Activity() {
companion object {
private val TAG: String = this::class.java.simpleName

¥

private var credentialsProvider: AWSCredentialsProvider? = null
private var awsConfiguration: AWSConfiguration? = null

override fun onCreate(savedInstanceState: Bundle?) {
super.onCreate(savedInstanceState);

AWSMobileClient.getInstance().initialize(this) {
credentialsProvider = AWSMobileClient.getInstance().credentialsProvider
awsConfiguration = AWSMobileClient.getInstance().configuration

IdentityManager.getDefaultIdentityManager().getUserID(object : IdentityHandler

override fun handleError(exception: Exception?) {
Log.e(TAG, "Retrieving identity: ${exception.message}")

}

override fun onIdentityId(identityId: String?) {
Log.d(TAG, "Identity = $identityId")
val cachedIdentityId =
IdentityManager.getDefaultIdentityManager().cachedUserID
// Do something with the identity here
¥
9]

}.execute()

// More onCreate code...

iOS - Swift

1. Prerequisites
« Install Xcode version 8.0 or later.
2. Install Cocoapods. From a terminal window run:

sudo gem install cocoapods

10

https://developer.apple.com/xcode/downloads/

AWS Mobile Developer Guide
Connect to Your Backend

. Create Podfile. From a terminal window, navigate to the directory that contains your project's
.xcodeproj file and run:

pod init

. Add core AWS Mobile SDK components to your build.

platform :ios, '9.0'

target :'YOUR-APP-NAME' do
use_frameworks!
pod 'AWSMobileClient', '~> 2.6.13"'
other pods

end

. Install dependencies by runnng:

pod install --repo-update

If you encounter an error message that begins "[!] Failed to connect to GitHub to
update the CocoaPods/Specs . . ." andyourinternet connectivity is working, you may
need to update openssl and Ruby.

. The command pod install creates a new workspace file. Close your Xcode project and reopen it
using . /YOUR-PROJECT-NAME. xcworkspace.

Use ONLY your .xcworkspace Remember to always use . /YOUR-PROJECT-
NAME . xcworkspace to open your Xcode
project from now on.

. Rebuild your app after reopening it in the workspace to resolve APIs from new libraries called in
your code. This is a good practice any time you add import statements.

. Replace the return true statement in didFinishLaunching with the following code in your
AppDelegate to establish a run-time connection with AWS Mobile.

import UIKit
import AWSMobileClient

@UIApplicationMain
class AppDelegate: UIResponder, UIApplicationDelegate {

func application(_ application: UIApplication,
didFinishLaunchingWithOptions launchOptions:
[UIApplicationLaunchOptionsKey: Any]?) -> Bool {
// Override point for customization after application launch.

// Create AWSMobileClient to connect with AWS

return AWSMobileClient.sharedInstance().interceptApplication(
application,
didFinishLaunchingWithOptions: launchOptions)

What does this do? When AWSMobileClient is initialized, it
makes a Sigv4 signed network call to Amazon
Cognito Federated Identities to retrieve AWS
credentials that provide the user access to
your backend resources. When the network

11

https://stackoverflow.com/questions/38993527/cocoapods-failed-to-connect-to-github-to-update-the-cocoapods-specs-specs-repo/48962041#48962041
http://docs.aws.amazon.com/general/latest/gr/signing_aws_api_requests.html
http://docs.aws.amazon.com/cognito/latest/developerguide/cognito-identity.html
http://docs.aws.amazon.com/cognito/latest/developerguide/cognito-identity.html

AWS Mobile Developer Guide
Next Steps

interaction succeeds, the onComplete method
of the AWSStartUpHandler is called.

Your app is now set up to interact with the AWS services you configured in your Mobile Hub project!

Choose the runicon (

<problematic>|play|</problematic>

) in the top left of the Xcode window or type
<problematic>|Acommand|</problematic>

-R to build and run your app. Look for welcome to AWS! in the log output.

Optional: If you want to make sure you're connected to AWS, import AWSCore and add the
following code to didFinishLaunchingWithOptions before you return AWSMobileClient.

import AWSCore

//.

AWSDDLog.add(AWSDDTTYLogger .sharedInstance)
AWSDDLog.sharedInstance.logLevel = .info

Optional: The following example shows how to retrieve the reference to
AwWSCredentialsProvider object which can be used to instantiate other SDK clients. You can
use the AWSIdentityManager to fetch the AWS identity id of the user from Amazon Cognito.

import UIKit
import AWSMobileClient
import AWSAuthCore

class ViewController: UIViewController {

@IBOutlet weak var textfield: UITextField!
override func viewDidLoad() {
super.viewDidLoad()
textfield.text = "View Controller Loaded"

// Get the AWSCredentialsProvider from the AWSMobileClient
let credentialsProvider =
AWSMobileClient.sharedInstance().getCredentialsProvider()

// Get the identity Id from the AWSIdentityManager
let identityId = AWSIdentityManager.default().identityId

Next Steps

o Add Analytics (p. 13)

« Add User Sign-in (p. 20)

o Add Push Notification (p. 43)
« Add NoSQL Database (p. 54)
» Add User File Storage (p. 66)
« Add Cloud logic (p. 75)

12

AWS Mobile Developer Guide
Add Analytics

« Add Messaging (p. 83)
« Add Conversational Bots (p. 84)
« Add Hosting and Streaming

Add Analytics to your Mobile App with Amazon
Pinpoint

Overview

Gather the data that helps improve your app's usability, monetization, and engagement with your users.
Mobile Hub deploys your analytics backend when you enable the Messaging and Analytics (p. 340)
feature, which uses the Amazon Pinpoint service.

Set up your Backend

1. Complete the Get Started (p. 2) steps before your proceed.

2. When you create a project, we enable analytics by default in your backend. You should see a green
check mark present on the Analytics tile in your backend, indicating that the feature is enabled. If the
check mark is absent, choose Analytics, and then choose Enable.

Backend

A list of enabled features in your backend.

@ ©

Messaging and Analytics

Engage users with mobile push, emails, or SMS

messages and analyze app usage

Connect to your Backend

Use the following steps to add analytics to your mobile app and monitor the results through Amazon
Pinpoint.

Add Analytics
Android - Java

1. Set up AWS Mobile SDK components by following the Basic Backend Setup (p. 2) steps. These
include:

a. Include the following libraries in your app/build.gradle dependencies list.

dependencies{
implementation 'com.amazonaws:aws-android-sdk-pinpoint:2.6.+"'
implementation ('com.amazonaws:aws-android-sdk-mobile-client:2.6.+@aar')
{ transitive = true }
// other dependencies . . .

13

http://docs.aws.amazon.com/pinpoint/latest/developerguide/welcome.html

AWS Mobile Developer Guide
Add Analytics

}

« aws-android-sdk-pinpoint library enables sending analytics to Amazon Pinpoint.

o aws-android-sdk-mobile-client library gives access to the AWS credentials provider
and configurations.

b. Add required permissions to your app manifest.

The AWS Mobile SDK required the INTERNET and ACCESS_NETWORK_STATE permissions.
These are defined in the AndroidManifest.xml file.

<uses-permission android:name="android.permission.INTERNET"/>
<uses-permission android:name="android.permission.ACCESS_NETWORK_STATE"/>

. Add calls to capture session starts and stops.

Three typical places to instrument your app session start and stop are:
« Start a session in the Application.onCreate() method.
« Start a session in the onCreate () method of the app's first activity.

« Start and/or stop a session in the ActivityLifecycleCallbacks class.

The following example shows starting a session in the OnCreate event of MainActivity.

import android.support.v7.app.AppCompatActivity;
import android.os.Bundle;

import com.amazonaws.mobileconnectors.pinpoint.PinpointManager;
import com.amazonaws.mobileconnectors.pinpoint.PinpointConfiguration;
import com.amazonaws.mobile.client.AWSMobileClient;

public class MainActivity extends AppCompatActivity {
public static PinpointManager pinpointManager;

@Override

protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.activity_main);

// Initialize the AWS Mobile Client
AWSMobileClient.getInstance().initialize(this).execute();

PinpointConfiguration config = new PinpointConfiguration(
MainActivity.this,
AWSMobileClient.getInstance().getCredentialsProvider(),
AWSMobileClient.getInstance().getConfiguration()

)i

pinpointManager = new PinpointManager(config);

pinpointManager.getSessionClient().startSession();

pinpointManager.getAnalyticsClient().submitEvents();

To stop the session, use stopSession() and submitEvents() at the last point in the session
you want to capture.

/7

pinpointManager.getSessionClient().stopSession();
pinpointManager.getAnalyticsClient().submitEvents();

14

https://developer.android.com/reference/android/app/Application.ActivityLifecycleCallbacks

AWS Mobile Developer Guide
Add Analytics

//

Android - Kotlin

1. Set up AWS Mobile SDK components by following the Basic Backend Setup (p. 2) steps. These
include:

a. Include the following libraries in your app/build.gradle dependencies list.

dependencies {
implementation 'com.amazonaws:aws-android-sdk-pinpoint:2.6.+"
implementation ('com.amazonaws:aws-android-sdk-mobile-client:2.6.+@aar')
{ transitive = true }
// other dependencies

« aws-android-sdk-pinpoint library enables sending analytics to Amazon Pinpoint.

+ aws-android-sdk-mobile-client library gives access to the AWS credentials provider
and configurations.

b. Add required permissions to your app manifest.

The AWS Mobile SDK required the INTERNET and ACCESS_NETWORK_STATE permissions.
These are defined in the AndroidManifest.xml file.

<uses-permission android:name="android.permission.INTERNET"/>
<uses-permission android:name="android.permission.ACCESS_NETWORK_STATE"/>

2. Add calls to capture session starts and stops.

Three typical places to instrument your app session start and stop are:
« Start a session in the Application.onCreate() method.

« Start a session in the onCreate () method of the app's first activity.
« Start and/or stop a session in the ActivityLifecycleCallbacks class.

The following example shows starting a session in the OnCreate event of MainActivity.

import android.support.v7.app.AppCompatActivity;

import android.os.Bundle;

import com.amazonaws.mobileconnectors.pinpoint.PinpointManager;
import com.amazonaws.mobileconnectors.pinpoint.PinpointConfiguration;
import com.amazonaws.mobile.client.AWSMobileClient;

class MainActivity : AppCompatActivity() {
companion object {
var pinpointManager: PinpointManager? = null

¥

override fun onCreate(savedInstanceState: Bundle?) {
super.onCreate(savedInstanceState)
setContentView(R.layout.activity_main)

// Initialize the AWS Mobile client
AWSMobileClient.getInstance().initialize(this).execute()

with (AWSMobileClient.getInstance()) {
val config = PinpointConfiguration(this, credentialsProvider,
configuration)
pinpointManager = PinpointManager(config)

15

https://developer.android.com/reference/android/app/Application.ActivityLifecycleCallbacks

AWS Mobile Developer Guide
Add Analytics

}

pinpointManager?.sessionClient?.startSession()
pinpointManager?.analyticsClient?.submitEvents()

To stop the session, use stopSession() and submitEvents() at the last point in the session
you want to capture.

/7

pinpointManager?.sessionClient?.stopSession();
pinpointManager?.analyticsClient?.submitEvents();

/7

iOS - Swift

1. Set up AWS Mobile SDK components with the following Basic Backend Setup (p. 2) steps.
a. The podfile that you configure to install the AWS Mobile SDK must contain:

platform :ios, '9.0'
target :'YourAppName' do
use_frameworks!
pod 'AWSPinpoint', '~> 2.6.13'

other pods

end

Run pod install --repo-update before you continue.

If you encounter an error message that begins"[!] Failed to connect to GitHub to
update the CocoaPods/Specs . . ." andyour internet connectivity is working, you may
need to update openssl and Ruby.

b. Classes that call Amazon Pinpoint APIs must use the following import statements:

import AWSCore
import AWSPinpoint

c. Insert the following code into the application(_:didFinishLaunchingWithOptions:)
method of your app's AppDelegate.swift.

class AppDelegate: UIResponder, UIApplicationDelegate {
var pinpoint: AWSPinpoint?
func application(_ application: UIApplication, didFinishLaunchingWithOptions

launchOptions:
[UIApplicationLaunchOptionsKey: Any]?) -> Bool {

/7.

// Initialize Pinpoint
pinpoint = AWSPinpoint(configuration:

16

https://stackoverflow.com/questions/38993527/cocoapods-failed-to-connect-to-github-to-update-the-cocoapods-specs-specs-repo/48962041#48962041

AWS Mobile Developer Guide
Add Analytics

AWSPinpointConfiguration.defaultPinpointConfiguration(launchOptions:
launchOptions))

/17
}

Monitor Analytics

Build and run your app to see usage metrics in Amazon Pinpoint.

1. To see visualizations of the analytics coming from your app, open your project in the Mobile Hub
console.

2. Choose Analytics on the upper right to open the Amazon Pinpoint console.

Mobile Hub new project D Zucker Support

new project Analytics | Resolirces

Apps

A list of apps you can cloud enable with the AWS features you have configured in your backend.

0 i0Ss android

1. Choose Analytics from the icons on the left of the console, and view the graphs of your app's usage. It
may take up to 15 minutes for metrics to become visible.

Overview Campaigns Demographics Events Funnels Revenue ®
Daily active users Monthly active users Purchases Sessions

4.6 nersce 63.7 ooy overagemau 0.33 purchases over perios 0.4 1verage sessions per day

0% Change over period 13.3% Change o 0% Change over period 0% Change over period

Sessions per user Sticky factor

0.09 vy average sessionsper ser 7.23% vy average sticky factor

0% Change over period 0% Change over period

Session heat map Countries

Monday us
Countries: 140 (100%)
Tuesday
Wednesday
Thursday 4

Friday

Saturday

17

https://console.aws.amazon.com/mobilehub/
https://console.aws.amazon.com/mobilehub/
https://console.aws.amazon.com/pinpoint/

AWS Mobile Developer Guide
Add Analytics

Learn more about Amazon Pinpoint.

Enable Custom App Analytics

Instrument your code to capture app usage event information, including attributes you define. Use
graphs of your custom usage event data in the Amazon Pinpoint console. Visualize how your users'
behavior aligns with a model you design using Amazon Pinpoint Funnel Analytics, or use stream the data
for deeper analysis.

Use the following steps to implement Amazon Pinpoint custom analytics for your app.

Android - Java

import com.amazonaws.mobileconnectors.pinpoint.analytics.AnalyticsEvent;

public void logEvent() {
final AnalyticsEvent event =
pinpointManager.getAnalyticsClient().createEvent("EventName")
.withAttribute("DemoAttributel", "DemoAttributeValuel")
.withAttribute("DemoAttribute2", "DemoAttributeValue2")
.withMetric("DemoMetricl", Math.random());

pinpointManager.getAnalyticsClient().recordEvent(event);
pinpointManager.getAnalyticsClient().submitEvents();

Android - Kotlin

import com.amazonaws.mobileconnectors.pinpoint.analytics.AnalyticsEvent;

fun logEvent() {
pintpointManager?.analyticsClient?.let {

val event = it.createEvent("EventName")
.withAttribute("DemoAttributel", "DemoAttributeValuel")
.withAttribute("DemoAttribute2", "DemoAttributeValue2")

.withMetric("DemoMetricl", Math.random());
it.recordEvent(event)
it.submitEvents()

iOS - Swift

func logEvent() {

let pinpointAnalyticsClient =
AWSPinpoint(configuration:
AWSPinpointConfiguration.defaultPinpointConfiguration(launchOptions:
nil)).analyticsClient

let event = pinpointAnalyticsClient.createEvent(withEventType: "EventName")
event.addAttribute("DemoAttributeValuel", forKey: "DemoAttributel")
event.addAttribute("DemoAttributeValue2", forKey: "DemoAttribute2")
event.addMetric(NSNumber.init(value: arc4random() % 65535), forKey: "EventName")
pinpointAnalyticsClient.record(event)

pinpointAnalyticsClient.submitEvents()

18

http://docs.aws.amazon.com/pinpoint/latest/developerguide/welcome.html
http://docs.aws.amazon.com/pinpoint/latest/userguide/analytics-funnels.html
http://docs.aws.amazon.com/pinpoint/latest/userguide/analytics-streaming.html

AWS Mobile Developer Guide
Add Analytics

Build, run, and try your app, and then view your custom events in the Events tab of the Amazon Pinpoint
console (use your Mobile Hub project / Analytics > Amazon Pinpoint console / Analytics > Events). Look
for the name of your event in the Events dropdown menu.

Enable Revenue Analytics

Amazon Pinpoint supports the collection of monetization event data. Use the following steps to place
and design analytics related to purchases through your app.

Android - Java

import
com.amazonaws .mobileconnectors.pinpoint.analytics.monetization.AmazonMonetizationEventBuilder;

public void logMonetizationEvent() {
final AnalyticsEvent event =
AmazonMonetizationEventBuilder.create(pinpointManager.getAnalyticsClient())
.withFormattedItemPrice("$10.00")
.withProductId("DEMO_PRODUCT_ ID")
.withQuantity(1.0)
.withProductId("DEMO_TRANSACTION_ID").build();

pinpointManager.getAnalyticsClient().recordEvent(event);
pinpointManager.getAnalyticsClient().submitEvents();

Android - Kotlin

import
com.amazonaws .mobileconnectors.pinpoint.analytics.monetization.AmazonMonetizationEventBuilder;

public void logMonetizationEvent() {
pinpointManager?.analyticsClient?.let {

val event = AmazonMonetizationEventBuilder.create(it)
.withFormattedItemPrice("$10.00")
.withProductId("DEMO_PRODUCT_ID")
.withQuantity(1.0)
.withProductId("DEMO_TRANSACTION_ID").build();

it.recordEvent(event)

it.submitEvents()

}
}
iOS - Swift
func sendMonetizationEvent()
{
let pinpointClient = AWSPinpoint(configuration:
AWSPinpointConfiguration.defaultPinpointConfiguration(launchOptions: nil))
let pinpointAnalyticsClient = pinpointClient.analyticsClient
let event =
pinpointAnalyticsClient.createVirtualMonetizationEvent(withProductId:
"DEMO_PRODUCT_ID", withItemPrice: 1.00, withQuantity: 1, withCurrency:
VIUSD")
pinpointAnalyticsClient.record(event)
pinpointAnalyticsClient.submitEvents()
¥

19

AWS Mobile Developer Guide
Add User Sign-in

Add User Sign-in to Your Mobile App with Amazon
Cognito
Enable your users to sign-in using credentials from Facebook, Google, or your own custom user directory.

The AWS Mobile Hub User Sign-in (p. 348) feature is powered by Amazon Cognito, and the SDK
provides a pre-built, configurable (p. 179) Sign-in Ul based on the identity provider(s) you configure.

Set Up Your Backend

Prerequisite Complete the Get Started (p. 2) steps before your proceed.
Email & Password

1. Enable User Sign-in: Open your project in Mobile Hub console and choose the User Sign-in tile.

2. Choose Email and Password sign-in

User sign-in

Add user sign-up, sign-in, and access control to your apps guickly with Amazon Cognito
Add sign-in Providers

= @ © O

Email and Password Facebook Login Google Sign-in SAML Federation

« Choose Create a new user pool, the feature and then select sign-in settings including: allowed
login methods; multi-factor authentication; and password requirements. Then choose Create
user pool.

Create new or import

O Create a new user pool Import an existing user pool
Create a basic user pool powered by Cognito Use one of your existing Cognito user pools

Choose settings

How are your users going to login?
Email Login method will be permanently saved
Username The login methodis) you select for your

20

http://docs.aws.amazon.com/cognito/latest/developerguide/
https://console.aws.amazon.com/mobilehub

AWS Mobile Developer Guide
Add User Sign-in

« Choose Import an existing user pool, select a user pool from the list of pools that are available
in the account. Choose if sign-in is required, and then choose Create user pool. If you import
a user pool that is in use by another app, then the two apps will share the user directory and
authenticate sign-in by the same set of users.

Create new or import

Create a new user pool 0 Import an existing user pool
Create a basic user pool powaered by Cognito Use one of your existing Cognito user pools

Select user pool

Hame e

3. When you are done configuring providers, choose Click here to return to project details page in
the blue banner at the top.

EITS Mobile Hub new project Hosting and Streaming Support

new project Analytics | Resources

@ Your backend has been updated. Choose this bann

4. On the project detail page, choose the flashing Integrate button, and then complete the steps
that guide you to connect your backend.

If your project contains apps for more than one platform, any that need to complete those steps
will also display a flashing Integrate button. The reminder banner will remain in place until you
have taken steps to update the configuration of each app in the project.

. Docs &
android o

Backend features m

5. Follow the Set up Email & Password Login (p. 23) steps to connect to your backend from your
app.

Facebook

1. Enable User Sign-in: Open your project in Mobile Hub console and choose the User Sign-in tile.

21

https://console.aws.amazon.com/mobilehub

AWS Mobile Developer Guide
Add User Sign-in

2. Configure Facebook sign-in: Choose the feature and then type your Facebook App ID and then
choose Enable Facebook login. To retrieve or create your Facebook App ID, see Setting Up
Facebook Authentication..

O Erruail and Password o Facebook Logen e Google Sign-ir 0 CAML Federation

o Facebooh App ID

Facebook Login m ,

Facebook Logn for Apps i5 a fast and corenient
Wy o padple 10 Ciiate 8counds and Iu-g a5
yOour app across multiple platiorms

Learn mare about Facebiook Login &7

3. When you are done configuring providers, choose Click here to return to project details page in
the blue banner at the top.

dWS ' Mobile Hub © new project Hosting and Streaming D Zucker Support

new project Analytics | Resources

(@ Your backend has been updated. Choose this ba

4. On the project detail page, choose the flashing Integrate button, and then complete the steps
that guide you to connect your backend.

If your project contains apps for more than one platform, any that need to complete those steps
will also display a flashing Integrate button. The reminder banner will remain in place until you
have taken steps to update the configuration of each app in the project.

. Docs &
android o

Backend features m

5. Follow the steps at Set Up Facebook Login (p. 29) to connect to your backend from your app.

Google

1. Enable User Sign-in: Open your project in Mobile Hub console and choose the User Sign-in tile.

2. Configure Google sign-in: Choose the feature and then type in your Google Web App Client ID,
and the Google Android or iOS Client ID (or both), and then choose Enable Google Sign-In. To
retrieve or create your Google Client IDs, see Setting Up Google Authentication.

22

http://docs.aws.amazon.com/aws-mobile/latest/developerguide/auth-facebook-setup.html
http://docs.aws.amazon.com/aws-mobile/latest/developerguide/auth-facebook-setup.html
https://console.aws.amazon.com/mobilehub
http://docs.aws.amazon.com/aws-mobile/latest/developerguide/auth-google-setup.html

AWS Mobile Developer Guide
Add User Sign-in

©) ol 0 Passwara Q) F<so00k Logn

od, you'l need the web app chent I provided by the
s consoke, when you enabled the Google AP

o

Google Sign-In

Google Web App Clieet 1D

Wour'l also need the 105 anclior Androkd chert 10, depending on which
platferrms you Suppert

Goagle Android Cllent 10

Googhe IO5 Cliest 1D

3. When you are done configuring providers, choose Click here to return to project details page in
the blue banner at the top.

dWS Mobile Hub * new project = Hosting and Streaming D Zucker Support

new project Analytics | Resources

@ Your backend has been updated. Choose this ba

4. On the project detail page, choose the flashing Integrate button, and then complete the steps
that guide you to connect your backend.

If your project contains apps for more than one platform, any that need to complete those steps
will also display a flashing Integrate button. The reminder banner will remain in place until you
have taken steps to update the configuration of each app in the project.

. Docs &
android o

Backend features m

5. Follow the steps at Set Up Google Login (p. 36) to connect to your backend from your app.

Setup Email & Password Login in your Mobile App

Choose your platform:

Android - Java

Use Android API level 23 or higher The AWS Mobile SDK library for Android sign-
in (aws-android-sdk-auth-ui) provides the
activity and view for presenting a SignInuUI for
the sign-in providers you configure. This library
depends on the Android SDK API Level 23 or
higher.

1. Add or update your AWS backend configuration file to incorporate your new sign-in. For details,
see the last steps in the Get Started: Set Up Your Backend (p. 2) section.

23

AWS Mobile Developer Guide
Add User Sign-in

2. Add these permisions to the AndroidManifest.xml file:

<uses-permission android:name="android.permission.INTERNET"/>
<uses-permission android:name="android.permission.ACCESS_NETWORK_STATE"/>

3. Add these dependencies to the app/build.gradle file:

dependencies {
// Mobile Client for initializing the SDK
implementation ('com.amazonaws:aws-android-sdk-mobile-client:2.6.+@aar")
{ transitive = true }

// Cognito UserPools for SignIn

implementation 'com.android.support:support-v4:24.+"'

implementation ('com.amazonaws:aws-android-sdk-auth-userpools:2.6.+@aar')
{ transitive = true }

// Sign in UI Library

implementation 'com.android.support:appcompat-v7:24.+"'

implementation ('com.amazonaws:aws-android-sdk-auth-ui:2.6.+@aar') { transitive
= true }

}

4. Create an activity that will present your sign-in screen.

In Android Studio, choose File > New > Activity > Basic Activity and type an activity name,
such as AuthenticatorActivity. If you want to make this your starting activity, move the
the intent filter block containing . LAUNCHER to the AuthenticatorActivity in your app's
AndroidManifest.xml.

<activity android:name=".AuthenticatorActivity">
<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>
</activity>

5. Update the onCreate function of your AuthenticatorActivity to call AWSMobileClient.
This component provides the functionality to resume a signed-in authentication session. It makes
a network call to retrieve the AWS credentials that allow users to access your AWS resources and
registers a callback for when that transaction completes.

If the user is signed in, the app goes to the NextActivity, otherwise it presents the user with
the AWS Mobile ready made, configurable sign-in Ul. NextActivity Activity class a user sees
after a successful sign-in.

import android.app.Activity;
import android.os.Bundle;

import com.amazonaws.mobile.auth.ui.SignInUI;

import com.amazonaws.mobile.client.AWSMobileClient;
import com.amazonaws.mobile.client.AWSStartupHandler;
import com.amazonaws.mobile.client.AWSStartupResult;

public class AuthenticatorActivity extends Activity {
@Override
protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.activity_authenticator);

// Add a call to initialize AWSMobileClient
AWSMobileClient.getInstance().initialize(this, new AWSStartupHandler() {

24

AWS Mobile Developer Guide
Add User Sign-in

@Override
public void onComplete(AWSStartupResult awsStartupResult) {
SignInUI signin = (SignInUI)
AWSMobileClient.getInstance().getClient(AuthenticatorActivity.this, SignInUI.class);
signin.login(AuthenticatorActivity.this,
NextActivity.class).execute();
}

}) .execute();

Choose the run icon (

<problematic>|play|</problematic>

) in Android Studio to build your app and run it on your device/emulator. You should see our ready
made sign-in Ul for your app. Checkout the next steps to learn how to customize your Ul (p. 179).

API References « AWSMobileClient

A library that initializes the SDK, constructs
CredentialsProvider and AWSConfiguration objects, fetches
the AWS credentials, and creates a SDK SignInUI client
instance.

¢ Auth UserPools

A wrapper Library for Amazon Cognito UserPools that
provides a managed Email/Password sign-in UL.

e Auth Core

A library that caches and federates a login provider
authentication token using Amazon Cognito Federated
Identities, caches the federated AWS credentials, and handles

the sign-in flow.

Android - Kotlin

Use Android API level 23 or higher The AWS Mobile SDK library for Android sign-
in (aws-android-sdk-auth-ui) provides the
activity and view for presenting a SignInuUI for
the sign-in providers you configure. This library
depends on the Android SDK API Level 23 or
higher.

1. Add or update your AWS backend configuration file to incorporate your new sign-in. For details,
see the last steps in the Get Started: Set Up Your Backend (p. 2) section.

2. Add these permisions to the AndroidManifest.xml file:

<uses-permission android:name="android.permission.INTERNET"/>
<uses-permission android:name="android.permission.ACCESS_NETWORK_STATE"/>

3. Add these dependencies to the app/build.gradle file:

dependencies {
// Mobile Client for initializing the SDK

25

http://docs.aws.amazon.com/AWSAndroidSDK/latest/javadoc/com/amazonaws/mobile/client/AWSMobileClient.html
http://docs.aws.amazon.com/AWSAndroidSDK/latest/javadoc/com/amazonaws/mobile/auth/userpools/CognitoUserPoolsSignInProvider.html
http://docs.aws.amazon.com/AWSAndroidSDK/latest/javadoc/com/amazonaws/mobile/auth/core/IdentityManager.html

AWS Mobile Developer Guide
Add User Sign-in

implementation ('com.amazonaws:aws-android-sdk-mobile-client:2.6.+@aar"')
{ transitive = true }

// Cognito UserPools for SignIn

implementation 'com.android.support:support-v4:24.+"'

implementation ('com.amazonaws:aws-android-sdk-auth-userpools:2.6.+@aar')
{ transitive = true }

// Sign in UI Library

implementation 'com.android.support:appcompat-v7:24.+"'

implementation ('com.amazonaws:aws-android-sdk-auth-ui:2.6.+@aar') { transitive
= true }

}

4. Create an activity that will present your sign-in screen.

In Android Studio, choose File > New > Activity > Basic Activity and type an activity name,
such as AuthenticatorActivity. If you want to make this your starting activity, move the
the intent filter block containing . LAUNCHER to the AuthenticatorActivity in your app's
AndroidManifest.xml.

<activity android:name=".AuthenticatorActivity">
<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>
</activity>

5. Update the onCreate function of your AuthenticatorActivity to call AWSMobileClient.
This component provides the functionality to resume a signed-in authentication session. It makes
a network call to retrieve the AWS credentials that allow users to access your AWS resources and
registers a callback for when that transaction completes.

If the user is signed in, the app goes to the NextActivity, otherwise it presents the user with
the AWS Mobile ready made, configurable sign-in Ul. NextActivity Activity class a user sees
after a successful sign-in.

import android.app.Activity;
import android.os.Bundle;

import com.amazonaws.mobile.auth.ui.SignInUI;

import com.amazonaws.mobile.client.AWSMobileClient;
import com.amazonaws.mobile.client.AWSStartupHandler;
import com.amazonaws.mobile.client.AWSStartupResult;

class AuthenticatorActivity : Activity() {
override fun onCreate(savedInstanceState: Bundle?) {
super.onCreate(savedInstanceState)

AWSMobileClient.getInstance().initialize(this) {
val ul = AWSMobileClient.getInstance().getClient(this@AuthenticatorActivity,
SignInUI::class.java)
ui.login(this@AuthenticatorActivity, NextActivity::class.java).execute()
}.execute()
¥
¥

Choose the run icon (

<problematic>|play|</problematic>

) in Android Studio to build your app and run it on your device/emulator. You should see our ready
made sign-in Ul for your app. Checkout the next steps to learn how to customize your Ul (p. 179).

26

AWS Mobile Developer Guide
Add User Sign-in

API References « AWSMobileClient

A library that initializes the SDK, constructs
CredentialsProvider and AWSConfiguration objects, fetches
the AWS credentials, and creates a SDK SignInUI client
instance.

¢ Auth UserPools

A wrapper Library for Amazon Cognito UserPools that
provides a managed Email/Password sign-in Ul.

¢ Auth Core

A library that caches and federates a login provider
authentication token using Amazon Cognito Federated
Identities, caches the federated AWS credentials, and handles
the sign-in flow.

iOS - Swift

1. Add or update your AWS backend configuration file to incorporate your new sign-in. For details,
see the last steps in the Get Started: Set Up Your Backend (p. 2) section.

2. Add the following dependencies in your project's Podfile.

platform :ios, '9.0'

target :'YOUR-APP-NAME' do
use_frameworks!
pod 'AWSUserPoolsSignIn', '~> 2.6.13'
pod 'AWSAuthUI', '~> 2.6.13'
pod 'AWSMobileClient', '~> 2.6.13'
other pods

end

3. Pull the SDK libraries into your local repo.

If you encounter an error message that begins"[!] Failed to connect to GitHub to
update the CocoaPods/Specs . . ." andyourinternet connectivity is working, you may
need to update openssl and Ruby.

4. Create a AWSMobileClient and initialize the SDK.

Add code to create an instance of AWSMobileClient in the application:open url function
of your AppDelegate.swift, to resume a previously signed-in authenticated session.

Then add another instance of AWSMobileClient in the didFinishLaunching function to
register the sign in providers, and to fetch an Amazon Cognito credentials that AWS will use to
authorize access once the user signs in.

import UIKit

import AWSMobileClient

@UIApplicationMain

class AppDelegate: UIResponder, UIApplicationDelegate {
// Add a AWSMobileClient call in application:open url

func application(_ application: UIApplication, open url: URL,
sourceApplication: String?, annotation: Any) -> Bool {

27

http://docs.aws.amazon.com/AWSAndroidSDK/latest/javadoc/com/amazonaws/mobile/client/AWSMobileClient.html
http://docs.aws.amazon.com/AWSAndroidSDK/latest/javadoc/com/amazonaws/mobile/auth/userpools/CognitoUserPoolsSignInProvider.html
http://docs.aws.amazon.com/AWSAndroidSDK/latest/javadoc/com/amazonaws/mobile/auth/core/IdentityManager.html
https://stackoverflow.com/questions/38993527/cocoapods-failed-to-connect-to-github-to-update-the-cocoapods-specs-specs-repo/48962041#48962041

AWS Mobile Developer Guide
Add User Sign-in

return AWSMobileClient.sharedInstance().interceptApplication(
application, open: url,
sourceApplication: sourceApplication,
annotation: annotation)

}

// Add a AWSMobileClient call in application:didFinishLaunching
func application(
_ application: UIApplication,
didFinishLaunchingWithOptions launchOptions:
[UIApplicationLaunchOptionsKey: Any]?) -> Bool {

return AWSMobileClient.sharedInstance().interceptApplication(
application, didFinishLaunchingWithOptions:
launchOptions)

}

// Other functions in AppDelegate

5. Implement your sign-in Ul by calling the library provided in the SDK.

import UIKit
import AWSAuthCore
import AWSAuthUI

class SampleViewController: UIViewController {
override func viewDidLoad() {
super.viewDidLoad()
if !AWSSignInManager.sharedInstance().isLoggedIn {
AWSAuthUIViewController
.presentViewController(with: self.navigationController!,

configuration: nil,
completionHandler: { (provider: AWSSignInProvider, error: Error?)

in
if error != nil {
print("Error occurred: \(String(describing: error))")
} else {
// Sign in successful.
}
»
}
}
}

Choose the run icon (

<problematic>|play|</problematic>

) in the top left of the Xcode window or type

<problematic>|Acommand|</problematic>

-R to build and run your app. You should see our pre-built sign-in Ul for your app. Checkout the next
steps to learn how to customize your Ul (p. 179).

API References « AWSMobileClient

28

http://docs.aws.amazon.com/AWSiOSSDK/latest/Classes/AWSMobileClient.html

AWS Mobile Developer Guide
Add User Sign-in

A library that initializes the SDK, fetches the AWS credentials,
and creates a SDK SignInUI client instance.

¢ Auth UserPools

A wrapper Library for Amazon Cognito UserPools that
provides a managed Email/Password sign-in Ul.

¢ Auth Core

A library that caches and federates a login provider
authentication token using Amazon Cognito Federated
Identities, caches the federated AWS credentials, and handles
the sign-in flow.

Setup Facebook Login in your Mobile App

Android - Java

Use Android API level 23 or higher The AWS Mobile SDK library for Android sign-
in (aws-android-sdk-auth-ui) provides the
activity and view for presenting a SignInuUI for
the sign-in providers you configure. This library
depends on the Android SDK API Level 23 or
higher.

1. Add or update your AWS backend configuration file to incorporate your new sign-in. For details,
see the last steps in the Get Started: Set Up Your Backend (p. 2) section.

2. Add the following permissions and Activity to your AndroidManifest.xml file:

<l-= ... ==>

<uses-permission android:name="android.permission.INTERNET"/>
<uses-permission android:name="android.permission.ACCESS_NETWORK_STATE"/>

<l-= ... ==>

<activity
android:name="com.facebook.FacebookActivity"
android:exported="true">
<intent-filter>
<action android:name="android.intent.action.VIEW" />
<category android:name="android.intent.category.DEFAULT" />
<category android:name="android.intent.category.BROWSABLE" />
<data android:scheme="@string/fb_login_protocol_scheme" />
</intent-filter>
</activity>

<l-= ... ==>

<meta-data android:name="com.facebook.sdk.ApplicationId" android:value="@string/
facebook_ app_id" />

<l-= ... ==>

3. Add these dependencies to your app/build.gradle file:

29

http://docs.aws.amazon.com/AWSiOSSDK/latest/Classes/AWSUserPoolsUIOperations.html
http://docs.aws.amazon.com/AWSiOSSDK/latest/Classes/AWSIdentityManager.html

AWS Mobile Developer Guide
Add User Sign-in

dependencies {
// Mobile Client for initializing the SDK
implementation ('com.amazonaws:aws-android-sdk-mobile-client:2.6.+@aar"')
{ transitive = true }

// Facebook SignIn

implementation 'com.android.support:support-v4:24.+"'

implementation ('com.amazonaws:aws-android-sdk-auth-facebook:2.6.+@aar"')
{ transitive = true }

// Sign in UI

implementation 'com.android.support:appcompat-v7:24.+"'

implementation ('com.amazonaws:aws-android-sdk-auth-ui:2.6.+@aar') { transitive =
true }

}

4. In strings.xml, add string definitions for your Facebook App ID and login protocol scheme.The
value should contain your Facebook ApplID in both cases, the login protocol value is always
prefaced with £b.

<string name="facebook_app_id">1231231231232123123</string>
<string name="fb_login_protocol_scheme">fb1231231231232123123</string>

5. Create an activity that will present your sign-in screen.

In Android Studio, choose File > New > Activity > Basic Activity and type an activity name,
such as AuthenticatorActivity. If you want to make this your starting activity, move the
the intent filter block containing . LAUNCHER to the AuthenticatorActivity in your app's
AndroidManifest.xml.

<activity android:name=".AuthenticatorActivity">
<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>
</activity>

6. Update the onCreate function of your AuthenticatorActivity to call AWSMobileClient.
This component provides the functionality to resume a signed-in authentication session. It makes
a network call to retrieve the AWS credentials that allow users to access your AWS resources and
registers a callback for when that transaction completes.

If the user is signed in, the app goes to the NextActivity, otherwise it presents the user with
the AWS Mobile ready made, configurable sign-in Ul. NextActivity Activity class a user sees
after a successful sign-in.

import android.app.Activity;
import android.os.Bundle;

import com.amazonaws.mobile.auth.ui.SignInUI;

import com.amazonaws.mobile.client.AWSMobileClient;
import com.amazonaws.mobile.client.AWSStartupHandler;
import com.amazonaws.mobile.client.AWSStartupResult;

public class AuthenticatorActivity extends Activity {
@Override
protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.activity_authenticator);

30

AWS Mobile Developer Guide
Add User Sign-in

// Add a call to initialize AWSMobileClient
AWSMobileClient.getInstance().initialize(this, new AWSStartupHandler() {
@Override
public void onComplete(AWSStartupResult awsStartupResult) {
SignInUI signin = (SignInUI)
AWSMobileClient.getInstance().getClient(AuthenticatorActivity.this, SignInUI.class);
signin.login(AuthenticatorActivity.this,
NextActivity.class).execute();

}

}) .execute();

Choose the run icon (
<problematic>|play|</problematic>

)

in Android Studio to build your app and run it on your device/emulator. You should see our ready

made sign-in Ul for your app. Checkout the next steps to learn how to customize your Ul (p. 179).

API References « AWSMobileClient

A library that initializes the SDK, constructs
CredentialsProvider and AWSConfiguration objects, fetches
the AWS credentials, and creates a SDK SignInUI client
instance.

e Auth UserPools

A wrapper Library for Amazon Cognito UserPools that
provides a managed Email/Password sign-in Ul.

« Auth Core

A library that caches and federates a login provider
authentication token using Amazon Cognito Federated
Identities, caches the federated AWS credentials, and handles
the sign-in flow.

Android - Kotlin

1

2.

Use Android API level 23 or higher The AWS Mobile SDK library for Android sign-
in (aws-android-sdk-auth-ui) provides the
activity and view for presenting a SignInuI for
the sign-in providers you configure. This library
depends on the Android SDK API Level 23 or
higher.

. Add or update your AWS backend configuration file to incorporate your new sign-in. For details,
see the last steps in the Get Started: Set Up Your Backend (p. 2) section.

Add the following permissions and Activity to your AndroidManifest.xml file:

<l-= ... ==>

<uses-permission android:name="android.permission.INTERNET"/>
<uses-permission android:name="android.permission.ACCESS_NETWORK_STATE"/>

<l-= ... ==>

31

http://docs.aws.amazon.com/AWSAndroidSDK/latest/javadoc/com/amazonaws/mobile/client/AWSMobileClient.html
http://docs.aws.amazon.com/AWSAndroidSDK/latest/javadoc/com/amazonaws/mobile/auth/userpools/CognitoUserPoolsSignInProvider.html
http://docs.aws.amazon.com/AWSAndroidSDK/latest/javadoc/com/amazonaws/mobile/auth/core/IdentityManager.html

AWS Mobile Developer Guide
Add User Sign-in

<activity
android:name="com.facebook.FacebookActivity"
android:exported="true">
<intent-filter>
<action android:name="android.intent.action.VIEW" />
<category android:name="android.intent.category.DEFAULT" />
<category android:name="android.intent.category.BROWSABLE" />
<data android:scheme="@string/fb_login_protocol_scheme" />
</intent-filter>
</activity>

<l-= ... -=>

<meta-data android:name="com.facebook.sdk.ApplicationId" android:value="@string/
facebook_app_id" />

<l-= ... -=>

3. Add these dependencies to your app/build.gradle file:

dependencies {
// Mobile Client for initializing the SDK
implementation ('com.amazonaws:aws-android-sdk-mobile-client:2.6.+@aar"')
{ transitive = true }

// Facebook SignIn

implementation 'com.android.support:support-v4:24.+"'

implementation ('com.amazonaws:aws-android-sdk-auth-facebook:2.6.+@aar"')
{ transitive = true }

// Sign in UI

implementation 'com.android.support:appcompat-v7:24.+"'

implementation ('com.amazonaws:aws-android-sdk-auth-ui:2.6.+@aar') { transitive =
true }

}

4. In strings.xml, add string definitions for your Facebook App ID and login protocol scheme.The
value should contain your Facebook ApplID in both cases, the login protocol value is always
prefaced with £b.

<string name="facebook_app_id">1231231231232123123</string>
<string name="fb_login_protocol_scheme">fb1231231231232123123</string>

5. Create an activity that will present your sign-in screen.

In Android Studio, choose File > New > Activity > Basic Activity and type an activity name,
such as AuthenticatorActivity. If you want to make this your starting activity, move the
the intent filter block containing . LAUNCHER to the AuthenticatorActivity in your app's
AndroidManifest.xml.

<activity android:name=".AuthenticatorActivity">
<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>
</activity>

6. Update the onCreate function of your AuthenticatorActivity to call AWSMobileClient.
This component provides the functionality to resume a signed-in authentication session. It makes
a network call to retrieve the AWS credentials that allow users to access your AWS resources and
registers a callback for when that transaction completes.

32

AWS Mobile Developer Guide
Add User Sign-in

If the user is signed in, the app goes to the NextActivity, otherwise it presents the user with
the AWS Mobile ready made, configurable sign-in Ul. NextActivity Activity class a user sees
after a successful sign-in.

import android.app.Activity;
import android.os.Bundle;

import com.amazonaws.mobile.auth.ui.SignInUI;

import com.amazonaws.mobile.client.AWSMobileClient;
import com.amazonaws.mobile.client.AWSStartupHandler;
import com.amazonaws.mobile.client.AWSStartupResult;

class AuthenticatorActivity : Activity() {
override fun onCreate(savedInstanceState: Bundle?) {
super.onCreate(savedInstanceState)

AWSMobileClient.getInstance().initialize(this) {
val ul = AWSMobileClient.getInstance().getClient(this@AuthenticatorActivity,
SignInUI::class.java)
ui.login(this@AuthenticatorActivity, NextActivity::class.java).execute()
}.execute()
}
}

Choose the run icon (

<problematic>|play|</problematic>

) in Android Studio to build your app and run it on your device/emulator. You should see our ready
made sign-in Ul for your app. Checkout the next steps to learn how to customize your Ul (p. 179).

API References « AWSMobileClient

A library that initializes the SDK, constructs
CredentialsProvider and AWSConfiguration objects, fetches
the AWS credentials, and creates a SDK SignInUI client
instance.

¢ Auth UserPools

A wrapper Library for Amazon Cognito UserPools that
provides a managed Email/Password sign-in Ul.

¢ Auth Core

A library that caches and federates a login provider
authentication token using Amazon Cognito Federated
Identities, caches the federated AWS credentials, and handles
the sign-in flow.

iOS - Swift

1. Add or update your AWS backend configuration file to incorporate your new sign-in. For details,
see the last steps in the Get Started: Set Up Your Backend (p. 2) section.

2. Add the following dependencies in your project's Podfile.

platform :ios, '9.0'
target :'YOUR-APP-NAME' do
use_frameworks!
pod 'AWSMobileClient', '~> 2.6.13'

33

http://docs.aws.amazon.com/AWSAndroidSDK/latest/javadoc/com/amazonaws/mobile/client/AWSMobileClient.html
http://docs.aws.amazon.com/AWSAndroidSDK/latest/javadoc/com/amazonaws/mobile/auth/userpools/CognitoUserPoolsSignInProvider.html
http://docs.aws.amazon.com/AWSAndroidSDK/latest/javadoc/com/amazonaws/mobile/auth/core/IdentityManager.html

AWS Mobile Developer Guide
Add User Sign-in

pod 'AWSFacebookSignIn', '~> 2.6.13'
pod 'AWSAuthUI', '~> 2.6.13'
other pods

end

Run pod install --repo-update.

If you encounter an error message that begins "[!] Failed to connect to GitHub to
update the CocoaPods/Specs . . ." andyourinternet connectivity is working, you may
need to update openssl and Ruby.

. Add Facebook meta data to Info.plist.

To configure your Xcode project to use Facebook Login, right-choose Info.plist and then
choose Open As > Source Code.

Add the following entry, using your project name, Facebook ID and login scheme ID.

<plist version="1.0">
<l-= ... ==>
<dict>
<key>FacebookAppID</key>
<string>0123456789012345</string>
<key>FacebookDisplayName</key>
<string>YOUR-PROJECT-NAME</string>
<key>LSApplicationQueriesSchemes</key>
<array>
<string>fbapi</string>
<string>fb-messenger-api</string>
<string>fbauth2</string>
<string>fbshareextension</string>
</array>
<key>CFBundleURLTypes</key>
<array>
<dict>
<key>CFBundleURLSchemes</key>
<array>
<string>fb0123456789012345</string>
</array>
</dict>
</array>
</dict>
<l-= ... ==>

. Create a AWSMobileClient and initialize the SDK.

Add code to create an instance of AWSMobileClient inthe application:open url function
of your AppDelegate.swift, to resume a previously signed-in authenticated session.

Then add another instance of AWSMobileClient in the didFinishLaunching function to
register the sign in providers, and to fetch an Amazon Cognito credentials that AWS will use to
authorize access once the user signs in.

import UIKit

//import AWSMobileClient
import AWSMobileClient

@UIApplicationMain
class AppDelegate: UIResponder, UIApplicationDelegate {

// Add a AWSMobileClient call in application:open url

34

https://stackoverflow.com/questions/38993527/cocoapods-failed-to-connect-to-github-to-update-the-cocoapods-specs-specs-repo/48962041#48962041

AWS Mobile Developer Guide
Add User Sign-in

func application(_ application: UIApplication, open url: URL,
sourceApplication: String?, annotation: Any) -> Bool {

return AWSMobileClient.sharedInstance().interceptApplication(
application, open: url,
sourceApplication: sourceApplication,
annotation: annotation)

}

// Add a AWSMobileClient call in application:didFinishLaunching
func application(
_ application: UIApplication,
didFinishLaunchingWithOptions launchOptions:
[UIApplicationLaunchOptionsKey: Any]?) -> Bool {

return AWSMobileClient.sharedInstance().interceptApplication(
application, didFinishLaunchingWithOptions:
launchOptions)

}

// Other functions in AppDelegate

5. Implement your sign-in Ul by calling the library provided by the SDK.

import UIKit
import AWSAuthCore
import AWSAuthUI

class SampleViewController: UIViewController {
override func viewDidLoad() {
super.viewDidLoad()
if !AWSSignInManager.sharedInstance().isLoggedIn {
AWSAuthUIViewController
.presentViewController(with: self.navigationController!,

configuration: nil,
completionHandler: { (provider: AWSSignInProvider, error: Error?)

in
if error != nil {
print("Error occurred: \(String(describing: error))")
} else {
// sign in successful.
}
»
}
}
}

Choose the run icon (

<problematic>|play|</problematic>

) in the top left of the Xcode window or type

<problematic>|Acommand|</problematic>

-R to build and run your app. You should see our pre-built sign-in Ul for your app. Checkout the next
steps to learn how to customize your Ul (p. 179).

API References « AWSMobileClient

35

http://docs.aws.amazon.com/AWSiOSSDK/latest/Classes/AWSMobileClient.html

AWS Mobile Developer Guide
Add User Sign-in

A library that initializes the SDK, fetches the AWS credentials,
and creates a SDK SignInUI client instance.

¢ Auth UserPools

A wrapper Library for Amazon Cognito UserPools that
provides a managed Email/Password sign-in Ul.

¢ Auth Core

A library that caches and federates a login provider
authentication token using Amazon Cognito Federated
Identities, caches the federated AWS credentials, and handles
the sign-in flow.

Setup Google Login in your Mobile App

Android - Java

Use Android API level 23 or higher The AWS Mobile SDK library for Android sign-
in (aws-android-sdk-auth-ui) provides the
activity and view for presenting a SignInuUI for
the sign-in providers you configure. This library
depends on the Android SDK API Level 23 or
higher.

1. Add or update your AWS backend configuration file to incorporate your new sign-in. For details,
see the last steps in the Get Started: Set Up Your Backend (p. 2) section.

2. Add these permissions to your AndroidManifest.xml file:

<uses-permission android:name="android.permission.INTERNET"/>
<uses-permission android:name="android.permission.ACCESS_NETWORK_STATE"/>

3. Add these dependencies to your app/build.gradle file:

dependencies {
// Mobile Client for initializing the SDK
implementation ('com.amazonaws:aws-android-sdk-mobile-client:2.6.+@aar')
{ transitive = true }

// Google SignIn

implementation 'com.android.support:support-v4:24.+"'

implementation ('com.amazonaws:aws-android-sdk-auth-google:2.6.+@aar')
{ transitive = true }

// Sign in UI Library

implementation 'com.android.support:appcompat-v7:24.+"'

implementation ('com.amazonaws:aws-android-sdk-auth-ui:2.6.+@aar') { transitive
true }

}

4. Create an activity that will present your sign-in screen.

In Android Studio, choose File > New > Activity > Basic Activity and type an activity name,
such as AuthenticatorActivity. If you want to make this your starting activity, move the
the intent filter block containing . LAUNCHER to the AuthenticatorActivity in your app's
AndroidManifest.xml.

36

http://docs.aws.amazon.com/AWSiOSSDK/latest/Classes/AWSUserPoolsUIOperations.html
http://docs.aws.amazon.com/AWSiOSSDK/latest/Classes/AWSIdentityManager.html

AWS Mobile Developer Guide
Add User Sign-in

<activity android:name=".AuthenticatorActivity">
<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>
</activity>

. Update the onCreate function of your AuthenticatorActivity to call AWSMobileClient.
This component provides the functionality to resume a signed-in authentication session. It makes
a network call to retrieve the AWS credentials that allow users to access your AWS resources and
registers a callback for when that transaction completes.

If the user is signed in, the app goes to the NextActivity, otherwise it presents the user with
the AWS Mobile ready made, configurable sign-in Ul. NextActivity Activity class a user sees
after a successful sign-in.

import android.app.Activity;
import android.os.Bundle;

import com.amazonaws.mobile.auth.ui.SignInUI;

import com.amazonaws.mobile.client.AWSMobileClient;
import com.amazonaws.mobile.client.AWSStartupHandler;
import com.amazonaws.mobile.client.AWSStartupResult;

public class AuthenticatorActivity extends Activity {
@Override
protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.activity_authenticator);

// Add a call to initialize AWSMobileClient
AWSMobileClient.getInstance().initialize(this, new AWSStartupHandler() {
@Override
public void onComplete(AWSStartupResult awsStartupResult) {
SignInUI signin = (SignInUI)
AWSMobileClient.getInstance().getClient(AuthenticatorActivity.this, SignInUI.class);
signin.login(AuthenticatorActivity.this,
MainActivity.class).execute();

}

}) .execute();

Choose the runicon (
<problematic>|play|</problematic>
) in Android Studio to build your app and run it on your device/emulator. You should see our ready

made sign-in Ul for your app. Checkout the next steps to learn how to customize your Ul (p. 179).

API References « AWSMobileClient

A library that initializes the SDK, constructs
CredentialsProvider and AWSConfiguration objects, fetches
the AWS credentials, and creates a SDK SignInUI client
instance.

¢ Auth UserPools

A wrapper Library for Amazon Cognito UserPools that
provides a managed Email/Password sign-in UI.

37

http://docs.aws.amazon.com/AWSAndroidSDK/latest/javadoc/com/amazonaws/mobile/client/AWSMobileClient.html
http://docs.aws.amazon.com/AWSAndroidSDK/latest/javadoc/com/amazonaws/mobile/auth/userpools/CognitoUserPoolsSignInProvider.html

AWS Mobile Developer Guide
Add User Sign-in

e Auth Core

A library that caches and federates a login provider
authentication token using Amazon Cognito Federated
Identities, caches the federated AWS credentials, and handles

the sign-in flow.

Android - Kotlin

Use Android API level 23 or higher The AWS Mobile SDK library for Android sign-
in (aws-android-sdk-auth-ui) provides the
activity and view for presenting a SignInuUI for
the sign-in providers you configure. This library
depends on the Android SDK API Level 23 or
higher.

1. Add or update your AWS backend configuration file to incorporate your new sign-in. For details,
see the last steps in the Get Started: Set Up Your Backend (p. 2) section.

2. Add these permissions to your AndroidManifest.xml file:

<uses-permission android:name="android.permission.INTERNET"/>
<uses-permission android:name="android.permission.ACCESS_NETWORK_STATE"/>

3. Add these dependencies to your app/build.gradle file:

dependencies {
// Mobile Client for initializing the SDK
implementation ('com.amazonaws:aws-android-sdk-mobile-client:2.6.+@aar"')
{ transitive = true }

// Google SignIn

implementation 'com.android.support:support-v4:24.+"'

implementation ('com.amazonaws:aws-android-sdk-auth-google:2.6.+@aar')
{ transitive = true }

// Sign in UI Library

implementation 'com.android.support:appcompat-v7:24.+"'

implementation ('com.amazonaws:aws-android-sdk-auth-ui:2.6.+@aar') { transitive =
true }

}

4. Create an activity that will present your sign-in screen.

In Android Studio, choose File > New > Activity > Basic Activity and type an activity name,
such as AuthenticatorActivity. If you want to make this your starting activity, move the
the intent filter block containing . LAUNCHER to the AuthenticatorActivity in your app's
AndroidManifest.xml.

<activity android:name=".AuthenticatorActivity">
<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>
</activity>

5. Update the onCreate function of your AuthenticatorActivity to call AWSMobileClient.
This component provides the functionality to resume a signed-in authentication session. It makes

38

http://docs.aws.amazon.com/AWSAndroidSDK/latest/javadoc/com/amazonaws/mobile/auth/core/IdentityManager.html

AWS Mobile Developer Guide
Add User Sign-in

a network call to retrieve the AWS credentials that allow users to access your AWS resources and
registers a callback for when that transaction completes.

If the user is signed in, the app goes to the NextActivity, otherwise it presents the user with
the AWS Mobile ready made, configurable sign-in Ul. NextActivity Activity class a user sees
after a successful sign-in.

import android.app.Activity;
import android.os.Bundle;

import com.amazonaws.mobile.auth.ui.SignInUI;

import com.amazonaws.mobile.client.AWSMobileClient;
import com.amazonaws.mobile.client.AWSStartupHandler;
import com.amazonaws.mobile.client.AWSStartupResult;

class AuthenticatorActivity : Activity() {
override fun onCreate(savedInstanceState: Bundle?) {
super.onCreate(savedInstanceState)

AWSMobileClient.getInstance().initialize(this) {
val ul = AWSMobileClient.getInstance().getClient(this@AuthenticatorActivity,
SignInUI::class.java)
ui.login(this@AuthenticatorActivity, NextActivity::class.java).execute()
}.execute()
}
}

Choose the runicon (

<problematic>|play|</problematic>

) in Android Studio to build your app and run it on your device/emulator. You should see our ready
made sign-in Ul for your app. Checkout the next steps to learn how to customize your Ul (p. 179).

API References « AWSMobileClient

A library that initializes the SDK, constructs
CredentialsProvider and AWSConfiguration objects, fetches
the AWS credentials, and creates a SDK SignInUI client
instance.

e Auth UserPools

A wrapper Library for Amazon Cognito UserPools that
provides a managed Email/Password sign-in UL.

e Auth Core

A library that caches and federates a login provider
authentication token using Amazon Cognito Federated
Identities, caches the federated AWS credentials, and handles
the sign-in flow.

iOS - Swift

1. Add or update your AWS backend configuration file to incorporate your new sign-in. For details,
see the last steps in the Get Started: Set Up Your Backend (p. 2) section.

2. Add the following dependencies in the Podfile.

platform :ios, '9.0'

39

http://docs.aws.amazon.com/AWSAndroidSDK/latest/javadoc/com/amazonaws/mobile/client/AWSMobileClient.html
http://docs.aws.amazon.com/AWSAndroidSDK/latest/javadoc/com/amazonaws/mobile/auth/userpools/CognitoUserPoolsSignInProvider.html
http://docs.aws.amazon.com/AWSAndroidSDK/latest/javadoc/com/amazonaws/mobile/auth/core/IdentityManager.html

AWS Mobile Developer Guide
Add User Sign-in

target :'YOUR-APP-NAME' do
use_frameworks!
pod 'AWSMobileClient', '~> 2.6.13"'
pod 'AWSGoogleSignIn', '~> 2.6.13'
pod 'AWSAuthUI', '~> 2.6.13'
pod 'GoogleSignIn', '~> 4.0'
other pods

end

Run pod install --repo-update before you continue.

If you encounter an error message that begins"[!] Failed to connect to GitHub to
update the CocoaPods/Specs . . ." and your internet connectivity is working, you may
need to update openssl and Ruby.

. Add Google metadata to info.plist

To configure your Xcode project to use Google Login, open its Info.plist file using Right-click
> Open As > Source Code. Add the following entry. Substitute your project name for the
placeholder string.

<plist version="1.0">
<l-- .00 ==>
<key>CFBundleURLTypes</key>
<array>
<dict>
<key>CFBundleURLSchemes</key>
<array>
<string>com.googleusercontent.apps.XXXXXXXXXXXX~
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX</string>

</array>

</dict>
</array>
<l-— .0 ——>

. Create a AWSMobileClient and initialize the SDK.

Add code to create an instance of AWSMobileClient inthe application:open url function
of your AppDelegate.swift, to resume a previously signed-in authenticated session.

Then add another instance of AWSMobileClient in the didFinishLaunching function to
register the sign in providers, and to fetch an Amazon Cognito credentials that AWS will use to
authorize access once the user signs in.

import UIKit

//import AWSMobileClient
import AWSMobileClient

@UIApplicationMain
class AppDelegate: UIResponder, UIApplicationDelegate {

// Add a AWSMobileClient call in application:open url
func application(_ application: UIApplication, open url: URL,
sourceApplication: String?, annotation: Any) -> Bool {

return AWSMobileClient.sharedInstance().interceptApplication(
application, open: url,
sourceApplication: sourceApplication,
annotation: annotation)

40

https://stackoverflow.com/questions/38993527/cocoapods-failed-to-connect-to-github-to-update-the-cocoapods-specs-specs-repo/48962041#48962041

AWS Mobile Developer Guide
Add User Sign-in

// Add a AWSMobileClient call in application:didFinishLaunching
func application(
_ application: UIApplication,
didFinishLaunchingWithOptions launchOptions:
[UIApplicationLaunchOptionsKey: Any]?) -> Bool {

return AWSMobileClient.sharedInstance().interceptApplication(
application, didFinishLaunchingWithOptions:

launchOptions)

}

// Other functions in AppDelegate

}

5. Implement your sign-in Ul by calling the library provided by the SDK.

import UIKit
import AWSAuthCore
import AWSAuthUI

class SampleViewController: UIViewController {
override func viewDidLoad() {
super.viewDidLoad()
if !AWSSignInManager.sharedInstance().isLoggedIn {
AWSAuthUIViewController
.presentViewController(with: self.navigationController!,

configuration: nil,
completionHandler: { (provider: AWSSignInProvider, error: Error?)

in
if error != nil {
print("Error occurred: \(String(describing: error))")
} else {
// Sign in successful.
}
)
}
}
}

Choose the run icon (

<problematic>|play|</problematic>

) in the top left of the Xcode window or type

<problematic>|Acommand|</problematic>

-R to build and run your app. You should see our pre-built sign-in Ul for your app. Checkout the next
steps to learn how to customize your Ul (p. 179).

API References « AWSMobileClient

A library that initializes the SDK, fetches the AWS credentials,
and creates a SDK SignInUI client instance.

« Auth UserPools

A wrapper Library for Amazon Cognito UserPools that
provides a managed Email/Password sign-in Ul.

¢ Auth Core

41

http://docs.aws.amazon.com/AWSiOSSDK/latest/Classes/AWSMobileClient.html
http://docs.aws.amazon.com/AWSiOSSDK/latest/Classes/AWSUserPoolsUIOperations.html
http://docs.aws.amazon.com/AWSiOSSDK/latest/Classes/AWSIdentityManager.html

AWS Mobile Developer Guide
Add User Sign-in

A library that caches and federates a login provider
authentication token using Amazon Cognito Federated
Identities, caches the federated AWS credentials, and handles
the sign-in flow.

Enable Sign-out
Android - Java
To enable a user to sign-out of your app, register a callback for sign-in events by adding

a SsignInStateChangelListener to IdentityManager. The listener captures both
onUserSignedIn and onUserSignedOut events.

IdentityManager.getDefaultIdentityManager().addSignInStateChangeListener(new
SignInStateChangeListener() {

@Override

// Sign-in listener

public void onUserSignedIn() {

Log.d(LOG_TAG, "User Signed In");

¥

// Sign-out listener

@Override

public void onUserSignedoOut() {

// return to the sign-in screen upon sign-out
showSignIn();

)i

To initiate a sign-out, call the signout method of IdentityManager.

IdentityManager.getDefaultIdentityManager().signOut();

Android - Kotlin

To enable a user to sign-out of your app, register a callback for sign-in events by adding
a SignInStateChangeListener to IdentityManager. The listener captures both
onUserSignedIn and onUserSignedOut events.

IdentityManager.getDefaultIdentityManager().addSignInStateChangeListener/(
object : SignInStateChangeListener() {
override fun onUserSignedIn() {
Log.d(TAG, "User signed in");
}

override fun onUserSignedoOut() {
Log.d(TAG, "User signed out");

}
M

To initiate a sign-out, call the signout method of IdentityManager.

IdentityManager.getDefaultIdentityManager().signOut();

42

AWS Mobile Developer Guide
Add Push Notifications

iOS - Swift

To initiate a sign-out, add a call to AWSSignInManager.sharedInstance().logout.

@IBAction func signOutButtonPress(_ sender: Any) {

AWSSignInManager.sharedInstance().logout(completionHandler: {(result: Any?, error:
Error?) in
self.showSignIn()
// print("Sign-out Successful: \(signInProvider.getDisplayName)");

»

For a fuller example, see Sign-out a Signed-in User (p. 153) in the How To section.

Next Steps

o Customize the Ul (p. 179)
« Import Your Exisiting Amazon Cognito Identity Pool (p. 147)
» Amazon Cognito Developer Guide

Add Push Notifications to Your Mobile App with
Amazon Pinpoint

Overview

Mobile Hub deploys your Push Notifications backend services when you enable the Messaging and
Analytics (p. 340) feature using the Amazon Pinpoint service. Amazon Pinpoint enables apps to receive
mobile push messages sent from the Apple (APNs) and Google (FCM/GCM) platforms. You can also
create Amazon Pinpoint campaigns that tie user behavior to push or other forms of messaging.

Set Up Your Backend

1. Complete the Get Started (p. 2) steps before your proceed.
2. Choose the Messaging and Analytics tile
3. Choose Mobile push.

For Android - Firebase/Google Cloud Messaging (FCM/GCM): Choose Android and provide your
Firebase/Google application API key and Sender ID. To retrieve or create these values, see Setting Up
Android Push Notifications .

For iOS - Apple Push Notification Service (APNs): Choose iOS and provide your Apple app P12
Certificate and, optionally, Certificate password. To retrieve or create these items, see Setting Up iOS
Push Notifications.

4. When the operation is complete, an alert will pop up saying "Your Backend has been updated",
prompting you to download the latest copy of the cloud configuration file. If you're done with
configuring the feature, choose the banner to return to the project details page.

43

http://docs.aws.amazon.com/cognito/latest/developerguide/
http://docs.aws.amazon.com/pinpoint/latest/developerguide/
http://docs.aws.amazon.com/pinpoint/latest/developerguide/mobile-push-android.html
http://docs.aws.amazon.com/pinpoint/latest/developerguide/mobile-push-android.html
http://docs.aws.amazon.com/pinpoint/latest/developerguide/apns-setup.html
http://docs.aws.amazon.com/pinpoint/latest/developerguide/apns-setup.html

AWS Mobile Developer Guide
Add Push Notifications

dWS Mobile Hub © new project - Hosting and Streaming Support

new project Analytics | Resources

(@ Your backend has been updated.

5. From the project detail page, every app that needs to be updated with the latest cloud configuration
file will have a flashing Integrate button. Choose the button to enter the integrate wizard.

. Docs &
android o

Backend features m

6. Update your app with the latest copy of the cloud configuration file. Your app now references the
latest version of your backend. Choose Next and follow the Push Notification documentation below to
connect to your backend.

Connect to your backend

To add push notification to your app
Android - Java

1. Set up AWS Mobile SDK components with the following Set Up Your Backend (p. 2) steps.
a. AndroidManifest.xml must contain:

<uses-permission android:name="android.permission.WAKE_LOCK"/>

<uses-permission android:name="com.google.android.c2dm.permission.RECEIVE" />

<permission android:name="com.mysampleapp.permission.C2D_MESSAGE"
android:protectionLevel="signature" />

<uses-permission android:name="com.mysampleapp.permission.C2D_MESSAGE" />

<application

<!--Add these to your Application declaration
to filter for the notification intent-->
<receiver
android:name="com.google.android.gms.gcm.GcmReceiver"
android:exported="true"
android:permission="com.google.android.c2dm.permission.SEND" >
<intent-filter>
<action android:name="com.google.android.c2dm.intent.RECEIVE" />
<category android:name="com.mysampleapp" />
</intent-filter>
</receiver>

<service
android:name=".PushListenerService"
android:exported="false" >
<intent-filter>
<action android:name="com.google.android.c2dm.intent.RECEIVE" />
</intent-filter>
</service>

</application>

44

AWS Mobile Developer Guide
Add Push Notifications

b. Add the following to your app/build.gradle:

dependencies{
implementation 'com.amazonaws:aws-android-sdk-pinpoint:2.6.+"'
implementation ('com.amazonaws:aws-android-sdk-auth-core:2.6.+@aar')
{transitive = true;}

implementation 'com.google.android.gms:play-services-iid:11.6.0'
implementation 'com.google.android.gms:play-services-gcm:11.6.0'

c¢. Add the following to your project level build.gradle:

buildscript {
dependencies {
classpath 'com.google.gms:google-services:3.1.1"

¥

allprojects {
repositories {
maven {
url "https://maven.google.com"

2. Create an Amazon Pinpoint client in the location of your push notification code.

import com.amazonaws.mobileconnectors.pinpoint.PinpointConfiguration;
import com.amazonaws.mobileconnectors.pinpoint.PinpointManager;
import com.google.android.gms.gcm.GoogleCloudMessaging;

import com.google.android.gms.iid.InstancelD;

public class MainActivity extends AppCompatActivity {
public static final String LOG_TAG = MainActivity.class.getSimpleName();

public static PinpointManager pinpointManager;

@Override

protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.activity_main);

if (pinpointManager == null) {

PinpointConfiguration pinpointConfig = new PinpointConfiguration(
getApplicationContext(),
AWSMobileClient.getInstance().getCredentialsProvider(),
AWSMobileClient.getInstance().getConfiguration());

pinpointManager = new PinpointManager(pinpointConfig);

new Thread(new Runnable() {
@Override
public void run() {
try {
String deviceToken =
InstanceID.getInstance(MainActivity.this).getToken(
"123456789Your_GCM_Sender_Id",
GoogleCloudMessaging.INSTANCE_ID_SCOPE);
Log.e("NotError", deviceToken);
pinpointManager.getNotificationClient()
.registerGCMDeviceToken(deviceToken);

45

AWS Mobile Developer Guide
Add Push Notifications

} catch (Exception e) {
e.printStackTrace();

Android

¥
¥
}).start();
}
}
}
- Kotlin

1. Set up AWS Mobile SDK components with the following Set Up Your Backend (p. 2) steps.

da

AndroidManifest.xml must contain:

<uses-permission android:name="android.permission.WAKE_LOCK"/>

<uses-permission android:name="com.google.android.c2dm.permission.RECEIVE" />

<permission android:name="com.mysampleapp.permission.C2D_MESSAGE"
android:protectionLevel="signature" />

<uses-permission android:name="com.mysampleapp.permission.C2D_MESSAGE" />

<application

<!--Add these to your Application declaration

to filter for the notification intent-->

<receiver
android:name="com.google.android.gms.gcm.GcmReceiver"
android:exported="true"
android:permission="com.google.android.c2dm.permission.SEND" >
<intent-filter>

<action android:name="com.google.android.c2dm.intent.RECEIVE"

<category android:name="com.mysampleapp" />
</intent-filter>
</receiver>

<service
android:name=".PushListenerService"
android:exported="false" >
<intent-filter>

<action android:name="com.google.android.c2dm.intent.RECEIVE"

</intent-filter>
</service>

</application>

/>

/>

. Add the following to your app/build.gradle:

dependencies{
implementation 'com.amazonaws:aws-android-sdk-pinpoint:2.6.+"'
implementation ('com.amazonaws:aws-android-sdk-auth-core:2.6.+@aar')
{transitive = true;}

implementation 'com.google.android.gms:play-services-iid:11.6.0'
implementation 'com.google.android.gms:play-services-gcm:11.6.0'

. Add the following to your project level build.gradle:

buildscript {
dependencies {
classpath 'com.google.gms:google-services:3.1.1"

}

46

AWS Mobile Developer Guide
Add Push Notifications

}

allprojects {
repositories {
maven {
url "https://maven.google.com"

}

2. Create an Amazon Pinpoint client in the location of your push notification code.

import com.amazonaws.mobileconnectors.pinpoint.PinpointConfiguration;
import com.amazonaws.mobileconnectors.pinpoint.PinpointManager;
import com.google.android.gms.gcm.GoogleCloudMessaging;

import com.google.android.gms.iid.InstancelD;

class MainActivity : AppCompatActivity() {
companion object {
private val LOG_TAG = this::class.java.getSimpleName
var pinpointManager: PinpointManager? = null

}

override fun onCreate(savedInstanceState: Bundle?) {
super.onCreate(savedInstanceState)
setContentView(R.layout.activity_main)

AWSMobileClient.getInstance().initialize(this).execute()
with (AWSMobileClient.getInstance()) {
if (pinpointManager == null) {
val config = PinpointConfiguration(applicationContext,
credentialsProvider, configuration)
pinpointManager = PinpointManager(config)
}
}

thread(start = true) {
try {
val deviceToken = InstanceID.getInstance(thise@eMainActivity)
.getToken("YOUR-GCM-SENDER-ID",
GoogleCloudMessaging.INSTANCE_ID_SCOPE)
Log.i(LOG_TAG, "GCM DeviceToken = $deviceToken")

pinpointManager?.notificationClient?.registerGCMDeviceToken(deviceToken)
} catch (e: Exception) {
e.printStackTrace()

}

iOS - Swift

1. Set up AWS Mobile SDK components with the following Set Up Your Backend (p. 2) steps.
a. Podfile that you configure to install the AWS Mobile SDK must contain:

platform :ios, '9.0'

target :'YOUR-APP-NAME' do
use_frameworks!

pod 'AWSPinpoint', '~> 2.6.13"'

47

AWS Mobile Developer Guide
Add Push Notifications

other pods

end

Run pod install --repo-update before you continue.

If you encounter an error message that begins "[!] Failed to connect to GitHub to
update the CocoaPods/Specs . . ." andyourinternet connectivity is working, you may
need to update openssl and Ruby.

b. Classes that call Amazon Pinpoint APIs must use the following import statements:

import AWSCore
import AWSPinpoint

2. Create an Amazon Pinpoint client by using the following code into the
didFinishLaunchwithOptions method of your app's AppDelegate.swift. This will also
register your device token with Amazon Pinpoint.

var pinpoint: AWSPinpoint?

func application(_ application: UIApplication, didFinishLaunchingWithOptions
launchOptions:
[UIApplicationLaunchOptionsKey: Any]?) -> Bool {

pinpoint =
AWSPinpoint(configuration:
AWSPinpointConfiguration.defaultPinpointConfiguration(launchOptions:
launchOptions))

return true

Add Amazon Pinpoint Targeted and Campaign Push Messaging

Amazon Pinpoint console enables you to target your app users with push messaging. You can send
individual messages or configure campaigns that target a group of users that match a profile that you
define. For instance, you could email users that have not used the app in 30 days, or send an SMS to
those that frequently use a given feature of your app.

Android - Java

The following 2 steps show how to receive push notifications targeted for your app.
1. Add a Push Listener Service to Your App.

The name of the class must match the push listener service name used in the app manifest.

pinpointManager is a reference to the static PinpointManager variable declared in the

MainActivity shown in a previous step. Use the following steps to set up Push Notification

listening in your app.

a. The following push listener code assumes that the app's MainActivity is configured using the
manifest setup described in a previous section.

import android.content.Intent;

import android.os.Bundle;

import android.support.v4.content.LocalBroadcastManager;
import android.util.Log;

48

https://stackoverflow.com/questions/38993527/cocoapods-failed-to-connect-to-github-to-update-the-cocoapods-specs-specs-repo/48962041#48962041
https://console.aws.amazon.com/pinpoint/

AWS Mobile Developer Guide
Add Push Notifications

import
com.amazonaws .mobileconnectors.pinpoint.targeting.notification.NotificationClient;
import com.google.android.gms.gcm.GemListenerService;

public class YOUR-PUSH-LISTENER-SERVICE-NAME extends GcmListenerService {
public static final String LOGTAG = PushListenerService.class.getSimpleName();

// Intent action used in local broadcast

public static final String ACTION_PUSH_NOTIFICATION = "push-notification";
// Intent keys

public static final String INTENT_SNS_NOTIFICATION_FROM = "from";

public static final String INTENT_SNS_NOTIFICATION_DATA = "data";

/**

* Helper method to extract push message from bundle.

* @param data bundle
* @return message string from push notification

public static String getMessage(Bundle data) {
// If a push notification is sent as plain
// text, then the message appears in "default".
// Otherwise it's in the "message" for JSON format.
return data.containsKey("default") ? data.getString("default")
data.getString(
"message", "");

}

private void broadcast(final String from, final Bundle data) {
Intent intent = new Intent(ACTION_PUSH_NOTIFICATION);
intent.putExtra(INTENT_ SNS_NOTIFICATION_FROM, from);
intent.putExtra(INTENT SNS_NOTIFICATION_DATA, data);
LocalBroadcastManager.getInstance(this).sendBroadcast(intent);

}

@Override

public void onMessageReceived(final String from, final Bundle data) {
Log.d(LOGTAG, "From:" + from);
Log.d(LOGTAG, "Data:" + data.toString());

final NotificationClient notificationClient =
MainActivity.pinpointManager.getNotificationClient();

NotificationClient.CampaignPushResult pushResult =
notificationClient.handleGCMCampaignPush(from, data,
this.getClass());

if (!NotificationClient.CampaignPushResult.NOT_HANDLED.equals(pushResult))

// The push message was due to a Pinpoint campaign.

// If the app was in the background, a local notification was added
// in the notification center. If the app was in the foreground, an
// event was recorded indicating the app was in the foreground,

// for the demo, we will broadcast the notification to let the main
// activity display it in a dialog.

if (

NotificationClient.CampaignPushResult.APP_IN_FOREGROUND.equals(pushResult)) {
// Create a message that will display the raw
//data of the campaign push in a dialog.
data.putString("
message",
String.format("Received Campaign Push:\n%s",
data.toString()));
broadcast(from, data);

}

49

AWS Mobile Developer Guide
Add Push Notifications

return;

. Add code to react to your push listener service.

The following code can be placed where your app will react to incoming notifications.

import android.app.Activity;

import android.app.AlertDialog;

import android.content.BroadcastReceiver;

import android.content.Context;

import android.content.Intent;

import android.content.IntentFilter;

import android.support.v4.content.LocalBroadcastManager;
import android.support.v7.app.AppCompatActivity;

import android.os.Bundle;

import android.util.Log;

public class MainActivity extends AppCompatActivity {
public static final String LOG_TAG = MainActivity.class.getSimpleName();

@Override
protected void onPause() {
super.onPause();

// unregister notification receiver

LocalBroadcastManager.getInstance(this).unregisterReceiver(notificationReceiver);

}

@Override
protected void onResume() {
super.onResume();

// register notification receiver

LocalBroadcastManager.getInstance(this).registerReceiver(notificationReceiver,
new IntentFilter(PushListenerService.ACTION_PUSH_NOTIFICATION));
}

private final BroadcastReceiver notificationReceiver = new BroadcastReceiver()

@Override
public void onReceive(Context context, Intent intent) {
Log.d(LOG_TAG, "Received notification from local broadcast. Display it
in a dialog.");

Bundle data =
intent.getBundleExtra(PushListenerService.INTENT_SNS_NOTIFICATION_DATA);
String message = PushListenerService.getMessage(data);

new AlertDialog.Builder(MainActivity.this)
.setTitle("Push notification")
.setMessage(message)
.setPositiveButton(android.R.string.ok, null)
.show();

50

AWS Mobile Developer Guide
Add Push Notifications

Android - Kotlin
The following 2 steps show how to receive push notifications targeted for your app.
1. Add a Push Listener Service to Your App.

The name of the class must match the push listener service name used in the app manifest.

pinpointManager is a reference to the static PinpointManager variable declared in the

MainActivity shown in a previous step. Use the following steps to set up Push Notification

listening in your app.

a. The following push listener code assumes that the app's MainActivity is configured using the
manifest setup described in a previous section.

import android.content.Intent;

import android.os.Bundle;

import android.support.v4.content.LocalBroadcastManager;
import android.util.Log;

import
com.amazonaws .mobileconnectors.pinpoint.targeting.notification.NotificationClient;
import com.google.android.gms.gcm.GemListenerService;

class YOUR-PUSH-LISTENER-SERVICE-NAME : GcmListenerService() {
companion object {
private val LOG_TAG = this::class.java.simpleName

const val ACTION_PUSH_NOTIFICATION: String = "push-notification"
const val INTENT_SNS_NOTIFICATION_FROM: String = "from"
const val INTENT_SNS_NOTIFICATION_DATA: String = "data"

// Helper method to extract push message from bundle.
fun getMessage(data: Bundle) =
if (data.containsKey("default")
data.getString("default")
else
data.getString("message", "")

}

private fun broadcast(from: String, data: Bundle) {
val intent = Intent(ACTION_PUSH NOTIFICATION).apply {
putExtra(INTENT SNS NOTIFICATION FROM, from)
putExtra(INTENT SNS NOTIFICATION DATA, data)
}
LocalBroadcastManager.getInstance(this).sendBroadcast(intent)

}

override fun onMessageReceived(from: String?, data: Bundle?) {
Log.d(LOG_TAG, "From: $from")
Log.d(LOG_TAG, "Data: $data")

val notificationClient =
MainActivity.pinpointManager!!.notificationClient!!
val pushResult = notificationClient.handleGCMCampaignPush(from, data,
this::class.java)
if (pushResult != NotificationClient.CampaignPushResult.NOT_HANDLED) {
// The push message was due to a Pinpoint campaign
// If the app was in the background, a local notification was added
// in the notification center. If the app was in the foreground, an
// event was recorded indicating the app was in the foreground,
// for the demo, we will broadcast the notification to let the main
// activity display it in a dialog.
if (pushResult ==
NotificationClient.CampaignPushResult.APP_IN_FOREGROUND) {
data.putString("message", "Received Campaign Push:\n$data")
broadcast(from, data)

51

AWS Mobile Developer Guide
Add Push Notifications

}

return

b. Add code to react to your push listener service.

The following code can be placed where your app will react to incoming notifications.

import android.app.Activity;

import android.app.AlertDialog;

import android.content.BroadcastReceiver;

import android.content.Context;

import android.content.Intent;

import android.content.IntentFilter;

import android.support.v4.content.LocalBroadcastManager;
import android.support.v7.app.AppCompatActivity;

import android.os.Bundle;

import android.util.Log;

class MainActivity : AppCompatActivity() {
companion object {

//

val notificationReceiver = object : BroadcastReceiver() {
override fun onReceive(context: Context, intent: Intent) {
Log.d(LOG_TAG, "Received notification from local broadcast.")

val data =
intent.getBundleExtra(PushListenerService.INTENT_SNS_NOTIFICATION_DATA)
val message = PushListenerService.getMessage(data)

// Uses anko library to display an alert dialog
alert(message) {

title = "Push notification"
positiveButton("OK") { /* Do nothing */ }
}.show()

}

override fun onPause() {
super .onPause()

LocalBroadcastManager.getInstance(this).unregisterReceiver(notificationReceiver)

}

override fun onResume() {
super.onResume()

LoadBroadcastManager.getInstance(this).registerReceiver(notificationReceiver,
IntentFilter(PushListenerService.ACTION_PUSH_NOTIFICATION))
}

/7

iOS - Swift

1. In your AppDelegate with PinpointManager instantiated, make sure the push listening code
exists in the following functions.

52

AWS Mobile Developer Guide
Add Push Notifications

//
func application(
_ application: UIApplication,
didRegisterForRemoteNotificationsWithDeviceToken deviceToken:
Data) {
pinpoint!.notificationManager.interceptDidRegisterForRemoteNotifications(
withDeviceToken: deviceToken)
}
func application(
_ application: UIApplication,
didReceiveRemoteNotification userInfo: [AnyHashable: Any],
fetchCompletionHandler completionHandler:
@escaping (UIBackgroundFetchResult) -> Void) {
pinpoint!.notificationManager.interceptDidReceiveRemoteNotification(
userInfo, fetchCompletionHandler: completionHandler)
if (application.applicationState == .active) {
let alert = UIAlertController(title: "Notification Received",
message: userInfo.description,
preferredStyle: .alert)
alert.addAction(UIAlertAction(title: "Ok", style: .default, handler:
nil))
UIApplication.shared.keyWindow?.rootViewController?.present(
alert, animated: true, completion:nil)
}
}
//
}
2. Add the following code in the ViewController where you request notification permissions.
var userNotificationTypes : UIUserNotificationType
userNotificationTypes = [.alert , .badge , .sound]
let notificationSettings = UIUserNotificationSettings.init(types:
userNotificationTypes, categories: nil)
UIApplication.shared.registerUserNotificationSettings(notificationSettings)
UIApplication.shared.registerForRemoteNotifications()

3. In Xcode, choose your app target in the Project Navigator, choose Capabilities, turn on Push
Notifications.

A, iPhone 7 Plus myProject: Ready | Today at 9:07 AM = @ | <RI =
v = | @ =l
B R a M © m o B B 5 myProject
. myProject] o General Capabilities Resource Tags Info Build Settings Build Phases Build

v myProject
» AppDelegate.swift 7Y icloud
+ ViewController.swift

Main.storyboard

> .| Push Notifications m_l
Assets.xcassets J
LaunchScreen.storyboard
Info.plist L A" .‘-:-. Game Center

» Products

4. Build and run your app using information at Building the Sample iOS App From AWS Mobile Hub.

53

http://docs.aws.amazon.com/pinpoint/latest/developerguide/getting-started-ios-sampleapp.html

AWS Mobile Developer Guide
Add NoSQL Database

Add NoSQL Database to Your Mobile App with
Amazon DynamoDB

Overview

The AWS Mobile Hub nosqldb feature uses Amazon DynamoDB to enable you to create database tables
that can store and retrieve data for use by your apps.

Set Up Your Backend

1. Complete the Get Started (p. 2) steps before you proceed.

2. Enable NoSQL Database: Open your project in Mobile Hub and choose the NoSQL Database tile to
enable the feature.

3. Follow the console work flow to define the tables you need. See Configuring the NoSQL Database
Feature (p. 336) for details.

4. When the operation is complete, an alert will pop up saying "Your Backend has been updated",
prompting you to download the latest copy of the cloud configuration file. If you're done configuring
the feature, choose the banner to return to the project details page.

dWS Mobile Hub © new project © Hosting and Streaming D Zucker Support

new project Analytics | Resources

5. From the project detail page, every app that needs to be updated with the latest cloud configuration
file will have a flashing Integrate button. Choose the button to enter the integrate wizard.

. Docs &
android o

Backend features m

6. Update your app with the latest copy of the cloud configuration file. Your app now references the
latest version of your backend. Choose Next and follow the NoSQL Database documentation below to
connect to your backend.

7. Download the models required for your app. The data models provide set and get methods for each
attribute of a DynamoDB table.

Connect to your backend

To add AWS Mobile NoSQL Database to your app
Android - Java

1. Set up AWS Mobile SDK components with the following Set Up Your Backend (p. 2) steps.
a. app/build.gradle must contain:

dependencies{
implementation 'com.amazonaws:aws-android-sdk-ddb-mapper:2.6.+"'

54

http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/
https://console.aws.amazon.com/mobilehub

AWS Mobile Developer Guide
Add NoSQL Database

}

b. For each Activity where you make calls to perform database operations, import the following
APIs.

import com.amazonaws.mobileconnectors.dynamodbv2.dynamodbmapper.DynamoDBMapper ;

. Create a DynamoDBMapper client for your app as in the following example.

import com.amazonaws.auth.AWSCredentialsProvider;
import com.amazonaws.mobile.client.AWSMobileClient;
import com.amazonaws.mobile.config.AWSConfiguration;

import com.amazonaws.mobileconnectors.dynamodbv2.dynamodbmapper.DynamoDBMapper ;
import com.amazonaws.services.dynamodbv2.AmazonDynamoDBClient;

import java.util.Random;
public class MainActivity extends AppCompatActivity {

// Declare a DynamoDBMapper object
DynamoDBMapper dynamoDBMapper;

@Override

protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.activity_main);

// AWSMobileClient enables AWS user credentials to access your table
AWSMobileClient.getInstance().initialize(this).execute();

AWSCredentialsProvider credentialsProvider =
AWSMobileClient.getInstance().getCredentialsProvider();

AWSConfiguration configuration =
AWSMobileClient.getInstance().getConfiguration();

// Add code to instantiate a AmazonDynamoDBClient
AmazonDynamoDBClient dynamoDBClient = new
AmazonDynamoDBClient(credentialsProvider);

this.dynamoDBMapper = DynamoDBMapper.builder()
.dynamoDBClient(dynamoDBClient)
.awsConfiguration(configuration)
.build();

// other activity code

3. Add the project data model files you downloaded from the Mobile Hub console. The data models

provide set and get methods for each attribute of a DynamoDB table they model.

a. Copy the data model file(s) you downloaded, . /YOUR-PROJECT-NAME-integration-1ib-
aws-my-sample-app-android/src/main/java/com/amazonaws/models/nosqlYOUR-
TABLE-NAMEDO. java into the Android Studio folder that contains your main activity.

Note
Use Asynchronous Calls to DynamoDB

55

AWS Mobile Developer Guide
Add NoSQL Database

Since calls to DynamoDB are synchronous, they don't belong on your Ul thread. Use an
asynchronous method like the Runnable wrapper to call DynamoDBOb jectMapper in a
separate thread.

Runnable runnable = new Runnable() {
public void run() {
//DynamoDB calls go here
}
}i
Thread mythread = new Thread(runnable);
mythread.start();

Android - Kotlin

1. Set up AWS Mobile SDK components with the following Set Up Your Backend (p. 2) steps.

a. app/build.gradle must contain:

dependencies{
implementation 'com.amazonaws:aws-android-sdk-ddb-mapper:2.6.+"'

}

b. For each Activity where you make calls to perform database operations, import the following
APIs.

import com.amazonaws.mobileconnectors.dynamodbv2.dynamodbmapper.DynamoDBMapper ;

2. Create a DynamoDBMapper client for your app as in the following example.

// import DynamoDBMapper
import com.amazonaws.mobileconnectors.dynamodbv2.dynamodbmapper.DynamoDBMapper ;

class MainActivity : AppCompatActivity() {
private var dynamoDBMapper: DynamoDBMapper? = null

override fun onCreate(savedInstanceState: Bundle?) {
super.onCreate(savedInstanceState)
setContentView(R.layout.activity_main)

val client =
AmazonDynamoDBClient (AWSMobileClient.getInstance().credentialsProvider)
dynamoDBMapper = DynamoDBMapper.builder()
.dynamoDBClient(client)
.awsConfiguration(AWSMobileClient.getInstance().configuration)
build()

}

3. Add the project data model files you downloaded from the Mobile Hub console. The data models
provide set and get methods for each attribute of a DynamoDB table they model.

a. Copy the data model file(s) you downloaded, . /YOUR-PROJECT-NAME-integration-1ib-
aws-my-sample-app-android/src/main/java/com/amazonaws/models/nosqlYOUR-
TABLE-NAMEDO. java into the Android Studio folder that contains your main activity.

Note
Use Asynchronous Calls to DynamoDB

56

AWS Mobile Developer Guide
Add NoSQL Database

Since calls to DynamoDB are synchronous, they don't belong on your Ul thread. Use an
asynchronous method like the thread wrapper to call DynamoDBOb jectMapper in a
separate thread.

thread(start = true) {
// DynamoDB calls go here

}

iOS - Swift

1. Set up AWS Mobile SDK components with the following Set Up Your Backend (p. 2) steps.
a. Podfile that you configure to install the AWS Mobile SDK must contain:

platform :ios, '9.0'

target :'YOUR-APP-NAME' do
use_frameworks!

pod 'AWSDynamoDB', '~> 2.6.13'
other pods
end

Run pod install --repo-update before you continue.

If you encounter an error message that begins"[!] Failed to connect to GitHub to
update the CocoaPods/Specs . . ." andyour internet connectivity is working, you may

need to update openssl and Ruby.
b. Classes that call DynamoDB APIs must use the following import statements:

import AWSCore
import AWSDynamoDB

2. From the location where you downloaded the data model file(s), drag and drop each file with the
form of your-table-name.swift into the folder that contains your AppDelegate.swift.

Select Copy items if needed and Create groups, if these options are offered.

Perform CRUD Operations

Topics

« Using the Data Model (p. 57)

Create (Save) an Item (p. 60)
Read (Load) an Item (p. 61)
Update an Item (p. 62)
Delete an Item (p. 63)

Using the Data Model

To connect your app to an Amazon DynamoDB table you have created, use a data model generated by
Mobile Hub, or create one in the following form. As an example, the fragments in the following sections
are based on a table named News. The table's partition key (hash key) is named userID, the sort key
(range key) is called articleId and other attributes, including author, title, category, content,

and content.

57

https://stackoverflow.com/questions/38993527/cocoapods-failed-to-connect-to-github-to-update-the-cocoapods-specs-specs-repo/48962041#48962041

AWS Mobile Developer Guide
Add NoSQL Database

Android - Java

In the following example, the NewsDO class defines the data model of the News table. The class is
used by the CRUD methods in this section to access the table and its attributes. The data model file
you downloaded from Mobile Hub in previous steps contains a similar class that defines the model
of your table.

Note that the class is annotated to map it to the Amazon DynamoDB table name. The attribute
names, hash key, and range key of the getters in the class are annotated to map them to local
variable names used by the app for performing data operations.

package com.amazonaws.models.nosql;

import com.amazonaws.mobileconnectors.dynamodbv2.dynamodbmapper.DynamoDBAttribute;
import com.amazonaws.mobileconnectors.dynamodbv2.dynamodbmapper .DynamoDBHashKey;
import com.amazonaws.mobileconnectors.dynamodbv2.dynamodbmapper.DynamoDBIndexHashKey;
import com.amazonaws.mobileconnectors.dynamodbv2.dynamodbmapper.DynamoDBIndexRangeKey;
import com.amazonaws.mobileconnectors.dynamodbv2.dynamodbmapper.DynamoDBRangeKey;
import com.amazonaws.mobileconnectors.dynamodbv2.dynamodbmapper.DynamoDBTable;

import java.util.List;
import java.util.Map;
import java.util.Set;

@DynamoDBTable(tableName = "nosglnews-mobilehub-1234567890-News")

public class NewsDO {
private String _userId;
private String _articleld;
private String _author;
private String _category;
private String _content;
private Double _creationDate;
private String _title;

@DynamoDBHashKey(attributeName = "userId")
@DynamoDBAttribute(attributeName = "userId")
public String getUserId() {

return _userId;

}

public void setUserId(final String _userId) {
this._userId = _userId;

}

@DynamoDBRangeKey(attributeName = "articleId")

@DynamoDBAttribute(attributeName = "articleId")

public String getArticleId() {
return _articleId;

}

public void setArticleId(final String _articleId) {
this._articleId = _articleId;

}

@DynamoDBAttribute(attributeName = "author")

public String getAuthor() {
return _author;

}

public void setAuthor(final String _author) {
this._author = _author;

}

// setters and getters for other attribues

58

AWS Mobile Developer Guide
Add NoSQL Database

}

Android - Kotlin

In the following example, the NewsDO class defines the data model of the News table. The class is
used by the CRUD methods in this section to access the table and its attributes. The data model file
you downloaded from Mobile Hub in previous steps contains a similar class that defines the model
of your table.

Note that the class is annotated to map it to the Amazon DynamoDB table name. The attribute
names, hash key, and range key of the getters in the class are annotated to map them to local
variable names used by the app for performing data operations.

package com.amazonaws.models.nosql;

import com.amazonaws.mobileconnectors.dynamodbv2.dynamodbmapper.DynamoDBAttribute;
import com.amazonaws.mobileconnectors.dynamodbv2.dynamodbmapper .DynamoDBHashKey;
import com.amazonaws.mobileconnectors.dynamodbv2.dynamodbmapper.DynamoDBIndexHashKey;
import com.amazonaws.mobileconnectors.dynamodbv2.dynamodbmapper.DynamoDBIndexRangeKey;
import com.amazonaws.mobileconnectors.dynamodbv2.dynamodbmapper.DynamoDBRangeKey;
import com.amazonaws.mobileconnectors.dynamodbv2.dynamodbmapper.DynamoDBTable;

import java.util.List;
import java.util.Map;
import java.util.Set;

@DynamoDBTable(tableName = "nosglnews-mobilehub-1234567890-News")

data class NewsDO {
@DynamoDBHashKey(attributeName = "userId")
@DynamoDBAttribute(attributeName = "userId")
var userId: String?

@DynamoDBRangeKey(attributeName = "articleId")
@DynamoDBAttribute(attributeName = "articleId")

var articleId: String?

@DynamoDBAttribute(attributeName = "author")
var author: String?

// setters and getters for other attribues

If you download an Android model file generated by Mobile Hub, it will be provided in Java and can
be used in a Kotlin project without modifications.

iOS - Swift

In the following example, the News class defines the data model of the News table. The class is used
by the CRUD methods in this section to access the table and its attributes. The data model file you
downloaded from Mobile Hub in previous steps contains a similar class that defines the model of
your table.

Note that the functions of the model class return the Amazon DynamoDB table, hash key

attibute, and range key attribute names used by the app for data operations. For example,
dynamoDBTableName () returns the name of the table object in AWS. The local variable names map
to the attribute names of the table. For instance, user1d is the name of both the local variable and
the attribute of the Amazon DynamoDB table.

This example is slightly simpler than the data model generated by Mobile Hub, but functionally the
same.

59

AWS Mobile Developer Guide
Add NoSQL Database

// News.swift

import Foundation
import UIKit
import AWSDynamoDB

class News: AWSDynamoDBObjectModel, AWSDynamoDBModeling {
@objc var userId: String?
@objc var articleId: String?
@objc var author: String?
@objc var category: String?
@objc var content: String?
@objc var creationDate: NSNumber?
@objc var title: String?
class func dynamoDBTableName() -> String {

return "nosqglnews-mobilehub-1200412570-News"

}
class func hashKeyAttribute() -> String {

return "userId"

}
class func rangeKeyAttribute() -> String {

return "articleId"

Create (Save) an Item

Use the following code to create an item in your NoSQL Database table.

Android - Java

public void createNews() {
final NewsDO newsItem = new NewsDO();

newsItem.setUserId(unique-user-id);

newsItem.setArticleId("Articlel");
newsItem.setContent("This is the article content");

new Thread(new Runnable() {
@Override
public void run() {
dynamoDBMapper .save(newsItem);
// Item saved

}
}).start();

Android - Kotlin

fun createNews() {
val NewsDO newsItem = NewsDO()
newsItem.userId = "unique-user-id"

60

AWS Mobile Developer Guide
Add NoSQL Database

newsItem.articleId = UUID.randomUUID().toString()
newsItem.author = "Your Name"
newsItem.content = "This is the article content"

thread(start = true) {
dynamoDBMapper .save(newsItem)

}

iOS - Swift

func createNews() {
let dynamoDbObjectMapper = AWSDynamoDBObjectMapper.default()

// Create data object using data models you downloaded from Mobile Hub
let newsItem: News = News()

newsItem.userId = AWSIdentityManager.default().identityId

newsItem.articleId = "YourArticleId"
newsItem.title = "YourTitlestring"
newsItem.author = "YourAuthor"

newsItem.creationDate = NSDate().timeIntervalSincel970 as NSNumber

//Save a new item
dynamoDbObjectMapper.save(newsItem, completionHandler: {
(error: Error?) -> Void in

if let error = error {
print("Amazon DynamoDB Save Error: \(error)")
return

}

print("An item was saved.")

)

Read (Load) an Item
Use the following code to read an item in your NoSQL Database table.

Android - Java

public void readNews() {
new Thread(new Runnable() {
@Override
public void run() {

NewsDO newsItem = dynamoDBMapper.load(
NewsDO.class,
unique-user-id,
"Articlel");

// Item read
// Log.d("News Item:", newsItem.toString());

}
}).start();

Android - Kotlin

fun readNews(userId: String, articleId: String, callback: (NewsDO?) -> Unit) {

61

AWS Mobile Developer Guide
Add NoSQL Database

thread(start = true) {
var newsItem = dynamoDBMapper.load(NewsDO::class.java,
userId, articleId)
runOnUiThread { callback(newsItem) }

iOS - Swift

func readNews() {
let dynamoDbObjectMapper = AWSDynamoDBObjectMapper.default()

// Create data object using data models you downloaded from Mobile Hub
let newsItem: News = News();
newsItem.userId = AWSIdentityManager.default().identityId

dynamoDbOb jectMapper.load(
News.self,
hashKey: newsItem.userId,
rangeKey: "YourArticleId",
completionHandler: {
(objectModel: AWSDynamoDBObjectModel?, error: Error?) -> Void in
if let error = error {
print("Amazon DynamoDB Read Error: \(error)")
return
}

print("An item was read.")

»

Update an Item
Use the following code to update an item in your NoSQL Database table.

Android - Java

public void updateNews() {
final NewsDO newsItem = new NewsDO();

newsItem.setUserId(unique-user-id);

newsItem.setArticleId("Articlel");
newsItem.setContent("This is the updated content.");

new Thread(new Runnable() {
@Override
public void run() {

dynamoDBMapper.save(newsItem);
// Item updated

}
}).start();

Android - Kotlin

fun updateNews(updatedNews: NewsDO) {
thread(start = true) {
dynamoDBMapper .save(updatedNews)

}

62

AWS Mobile Developer Guide
Add NoSQL Database

iOS - Swift

func updateNews() {
let dynamoDbObjectMapper = AWSDynamoDBObjectMapper.default()

let newsItem: News = News();

newsItem.userId = "unique-user-id"

newsItem.articleId = "YourArticleId"

newsItem.title = "This is the Title"

newsItem.author = "B Smith"

newsItem.creationDate = NSDate().timeIntervalSincel970 as NSNumber
newsItem.category = "Local News"

dynamoDbObjectMapper.save(newsItem, completionHandler: {(error: Error?) -> Void in

if let error = error {
print(" Amazon DynamoDB Save Error: \(error)")
return

}

print("An item was updated.")

»

Delete an Item
Use the following code to delete an item in your NoSQL Database table.

Android - Java

public void deleteNews() {
new Thread(new Runnable() {

@Override

public void run() {
NewsDO newsItem = new NewsDO();
newsItem.setUserId(unique-user-id); //partition key
newsItem.setArticleId("Articlel"); //range (sort) key
dynamoDBMapper.delete(newsItem);
// Item deleted

}
}).start();

Android - Kotlin

public void deleteNews(userId: String, articleId: String) {
thread(start = true) {
val item = NewsDO()
item.userId = userId
item.articleId = articleId

dynamoDBMapper.delete(item)

63

AWS Mobile Developer Guide
Add NoSQL Database

iOS - Swift

func deleteNews() {
let dynamoDbObjectMapper = AWSDynamoDBObjectMapper.default()

let itemToDelete = News()
itemToDelete?.userId = "unique-user-id"

itemToDelete?.articleId = "YourArticleId"

dynamoDbObjectMapper.remove(itemToDelete!, completionHandler: {(error: Error?) ->

Void in
if let error = error {
print(" Amazon DynamoDB Save Error: \(error)")
return
}

print("An item was deleted.")

»

Perform a Query

A query operation enables you to find items in a table. You must define a query using both the hash key
(partition key) and range key (sort key) attributes of a table. You can filter the results by specifying the
attributes you are looking for.

The following example code shows querying for news submitted with user1d (hash key) and article ID
beginning with Trial (range key).

Android - Java

public void queryNews() {

new Thread(new Runnable() {
@Override
public void run() {
NewsDO news = new NewsDO();
news.setUserId(unique-user-id);
news.setArticleId("Articlel");

Condition rangeKeyCondition = new Condition()
.withComparisonOperator(ComparisonOperator .BEGINS_WITH)
.withAttributevValueList(new Attributevalue().withS("Trial"));

DynamoDBQueryExpression queryExpression = new DynamoDBQueryExpression()
.withHashKeyValues(note)
.withRangeKeyCondition("articleId", rangeKeyCondition)
.withConsistentRead(false);

PaginatedList<NewsDO> result = dynamoDBMapper.query(NewsDO.class,
queryExpression);

Gson gson = new Gson();
StringBuilder stringBuilder = new StringBuilder();

// Loop through query results

for (int i = 0; i < result.size(); i++) {
String jsonFormOfItem = gson.toJdson(result.get(i));
stringBuilder.append(jsonFormOfItem + "\n\n");

}

// Add your code here to deal with the data result

64

AWS Mobile Developer Guide
Add NoSQL Database

Log.d("Query result: ", stringBuilder.toString());

if (result.isEmpty()) {
// There were no items matching your query.
}

}
}).start();

Android - Kotlin

public void queryNews(userId: String, articleId: String, callback: (List<NewsDO>?) ->
Unit) {
thread(start = true) {
val item = NewsDO()
item.userId = userId
item.articleId = articleId

val rangeKeyCondition = Condition()
.withComparisonOperator(ComparisonOperator .BEGINS_WITH)
.withAttributevValueList(Attributevalue().withS("Trial"))
val queryExpression = DynamoDBQueryExpression()
.withHashKeyValues(item)
.withRangeKeyCondition("articleId", rangeKeyCondition)
.withConsistentRead(false);
val result = dynamoDBMapper.query(NewsDO: :class.java, queryExpression)
runOnUiThread { callback(result) }

iOS - Swift

func queryNote() {
// 1) Configure the query
let queryExpression = AWSDynamoDBQueryExpression()
queryExpression.keyConditionExpression = "#articleId >= :articleId AND #userId
= :userId"

queryExpression.expressionAttributeNames = [

"#userId": "userId",
"#articleId": "articleId"
1
queryExpression.expressionAttributevalues = [
":articleId": "SomeArticleId",
":userId": "unique-user-id"
1

// 2) Make the query
let dynamoDbObjectMapper = AWSDynamoDBObjectMapper.default()

dynamoDbObjectMapper.query(News.self, expression: queryExpression) { (output:
AWSDynamoDBPaginatedOutput?, error: Error?) in
if error != nil {
print("The request failed. Error: \(String(describing: error))")

}
if output != nil {
for news in output!.items {
let newsItem = news as? News
print("\(newsItem!.title!)")
}
}

65

AWS Mobile Developer Guide
Add User File Storage

‘ }

Add User File Storage to Your Mobile App with
Amazon S3

Overview

Enable your app to store and retrieve user files from cloud storage with the permissions model that suits
your purpose. Mobile Hub User File Storage (p. 353) deploys and configures cloud storage buckets
using Amazon Simple Storage Service (Amazon S3).

Set Up Your Backend

1. Complete the Get Started (p. 2) steps before your proceed.

If you want to integrate an Amazon S3 bucket that you have already configured, go to Integrate an
Existing Bucket (p. 182).

2. Enable User File Storage: Open your project in Mobile Hub and choose the User File Storage tile to
enable the feature.

3. When the operation is complete, an alert will pop up saying "Your Backend has been updated",
prompting you to download the latest copy of the cloud configuration file. If you're done configuring
the feature, choose the banner to return to the project details page.

-Elfs Mobile Hub new project Hosting and Streaming D Zucker Support

new project Analytics | Resources

4. From the project detail page, every app that needs to be updated with the latest cloud configuration
file will have a flashing Integrate button. Choose the button to enter the integrate wizard.

. Docs &
android o

Backend features m

5. Update your app with the latest copy of the cloud configuration file. Your app now references the
latest version of your backend. Choose Next and follow the User File Storage documentation below to
connect to your backend.

Connect to Your Backend

Make sure to complete the add-aws-mobile-user-sign-in-backend-setup steps before using the
integration steps on this page.

To add User File Storage to your app
Android - Java

Set up AWS Mobile SDK components as follows:

66

http://docs.aws.amazon.com/AmazonS3/latest/dev/
https://console.aws.amazon.com/mobilehub

AWS Mobile Developer Guide
Add User File Storage

1. Add the following to app/build.gradle (Module:app):

dependencies {
implementation 'com.amazonaws:aws-android-sdk-s3:2.6.+"'
implementation 'com.amazonaws:aws-android-sdk-cognito:2.6.+"'

Perform a Gradle Sync to download the AWS Mobile SDK components into your app
2. Add the following to AndroidManifest.xml:

<uses-permission android:name="android.permission.WRITE_EXTERNAL_STORAGE" />

<application ... >
<!- Other manifest / application items . . . ->
<service

android:name="com.amazonaws.mobileconnectors.s3.transferutility.TransferService"
android:enabled="true" />

</application>

3. For each Activity where you make calls to perform user file storage operations, import the
following packages.

import com.amazonaws.mobileconnectors.s3.transferutility.*;

Android - Kotlin
Set up AWS Mobile SDK components as follows:

1. Add the following to app/build.gradle:

dependencies {
implementation 'com.amazonaws:aws-android-sdk-s3:2.6.+"'
implementation 'com.amazonaws:aws-android-sdk-cognito:2.6.+"'

Perform a Gradle Sync to download the AWS Mobile SDK components into your app
2. Add the following to AndroidManifest.xml:

<uses-permission android:name="android.permission.WRITE_EXTERNAL_STORAGE" />

<application ... >
<!- Other manifest / application items . . . ->
<service

android:name="com.amazonaws .mobileconnectors.s3.transferutility.TransferService"
android:enabled="true" />

</application>

3. For each Activity where you make calls to perform user file storage operations, import the
following packages.

import com.amazonaws.mobileconnectors.s3.transferutility.*;

67

AWS Mobile Developer Guide
Add User File Storage

iOS - Swift
Set up AWS Mobile SDK components as follows:

1. Add the following to Podfile that you configure to install the AWS Mobile SDK:

platform :ios, '9.0'

target :'YOUR-APP-NAME' do
use_frameworks!

pod 'AWSS3', '~> 2.6.13' # For file transfers
pod 'AWSCognito', '~> 2.6.13' #For data sync

other pods .

end

Run pod install --repo-update before you continue.

If you encounter an error message that begins "[!] Failed to connect to GitHub to
update the CocoaPods/Specs . . ." andyourinternet connectivity is working, you may
need to update openssl and Ruby.

2. Add the following imports to the classes that perform user file storage operations:

import AWSCore
import AWSS3

3. Add the following code to your AppDelegate to establish a run-time connection with AWS Mobile.

import UIKit
import AWSMobileClient

@UIApplicationMain
class AppDelegate: UIResponder, UIApplicationDelegate {

func application(_ application: UIApplication,
didFinishLaunchingWithOptions launchOptions: [UIApplicationLaunchOptionsKey:
Any]?) -> Bool {
return AWSMobileClient.sharedInstance().interceptApplication(application,
didFinishLaunchingWithOptions: launchOptions)
}
}

Upload a File
Android - Java

To upload a file to an Amazon S3 bucket, use AWSMobileClient to get the AWSConfiguration
and AWSCredentialsProvider, then create the TransferUtility object. AWSMobileClient
expects an activity context for resuming an authenticated session and creating the credentials
provider.

The following example shows using the TransferUtility in the context of an Activity.

If you are creating TransferUtility from an application context, you can construct the
AWSCredentialsProvider and passitinto TransferUtility to use in forming the
AWSConfiguration object. TransferUtility will check the size of file being uploaded and will
automatically switch over to using multi-part uploads if the file size exceeds 5 MB.

68

https://stackoverflow.com/questions/38993527/cocoapods-failed-to-connect-to-github-to-update-the-cocoapods-specs-specs-repo/48962041#48962041

AWS Mobile Developer Guide
Add User File Storage

import android.app.Activity;
import android.util.Log;

import com.amazonaws.mobile.client.AWSMobileClient;

import com.amazonaws.mobileconnectors.s3.transferutility.TransferUtility;
import com.amazonaws.mobileconnectors.s3.transferutility.TransferState;
import com.amazonaws.mobileconnectors.s3.transferutility.TransferObserver;
import com.amazonaws.mobileconnectors.s3.transferutility.TransferListener;
import com.amazonaws.services.s3.AmazonS3Client;

import java.io.File;
public class YourActivity extends Activity {

@Override

protected void onCreate(Bundle savedInstanceState) {
AWSMobileClient.getInstance().initialize(this).execute();
uploadWithTransferUtility();

}

public void uploadWithTransferUtility() {

TransferUtility transferUtility =
TransferUtility.builder()
.context(getApplicationContext())
.awsConfiguration(AWSMobileClient.getInstance().getConfiguration())
.s3Client(new
AmazonS3Client(AWSMobileClient.getInstance().getCredentialsProvider()))
.build();

TransferObserver uploadObserver =
transferUtility.upload(
"s3Folder/s3Key.txt",
new File("/path/to/file/localFile.txt"));

// Attach a listener to the observer to get state update and progress
notifications
uploadObserver.setTransferListener(new TransferListener() {

@Override
public void onStateChanged(int id, TransferState state) {
if (TransferState.COMPLETED == state) {
// Handle a completed upload.
}
}
@Override
public void onProgressChanged(int id, long bytesCurrent, long bytesTotal)
{
float percentDonef = ((float) bytesCurrent / (float) bytesTotal) *
100;

int percentDone = (int)percentDonef;

Log.d("YourActivity", "ID:" + id + " bytesCurrent: " + bytesCurrent
+ " bytesTotal: " + bytesTotal + " " + percentDone + "%");

}
@Override
public void onError(int id, Exception ex) {

// Handle errors

¥
)

// If you prefer to poll for the data, instead of attaching a

69

AWS Mobile Developer Guide
Add User File Storage

// listener, check for the state and progress in the observer.
if (TransferState.COMPLETED == uploadObserver.getState()) {
// Handle a completed upload.

}

Log.d("YourActivity", "Bytes Transferrred: " +
uploadObserver.getBytesTransferred());

Log.d("YourActivity", "Bytes Total: " + uploadObserver.getBytesTotal());

}

Android - Kotlin

To upload a file to an Amazon S3 bucket, use AWSMobileClient to get the AWSConfiguration
and AWSCredentialsProvider, then create the TransferUtility object. AWSMobileClient
expects an activity context for resuming an authenticated session and creating the credentials
provider.

The following example shows using the TransferUtility in the context of an Activity.

If you are creating TransferUtility from an application context, you can construct the
AWSCredentialsProvider and pass it into TransferUtility to use in forming the
AWSConfiguration object. TransferUtility will check the size of file being uploaded and will
automatically switch over to using multi-part uploads if the file size exceeds 5 MB.

import android.app.Activity;
import android.util.Log;

import com.amazonaws.mobile.client.AWSMobileClient;

import com.amazonaws.mobileconnectors.s3.transferutility.TransferUtility;
import com.amazonaws.mobileconnectors.s3.transferutility.TransferState;
import com.amazonaws.mobileconnectors.s3.transferutility.TransferObserver;
import com.amazonaws.mobileconnectors.s3.transferutility.TransferListener;
import com.amazonaws.services.s3.AmazonS3Client;

import java.io.File;

class YourActivity : Activity() {
override fun onCreate(savedInstanceState: Bundle?) {
super.onCreate(savedInstanceState)

AWSMobileClient.getInstance().initialize(this).execute()
uploadWithTransferUtility()
}

fun uploadwWithTransferUtility() {
val transferUtility = TransferUtility.builder()
.context(this@YourActivity.applicationContext)
.awsConfiguration(AWSMobileClient.getInstance().configutation)
.s3Client(AMazonS3Clinet(AWSMobileClient.getInstance().credentialsProvider)
.build()

val uploadObserver = transferUtility.upload("s3folder/s3key.txt", File("/path/
to/localfile.txt"))

// Attach a listener to the observer
uploadObserver.transferListener = object : TransferListener() {
override fun onStateChanged(id: Int, state: TransferState) {
when(state) {
TransferState.COMPLETED -> {
/* Handle a completed upload */
}

else -> {

70

AWS Mobile Developer Guide
Add User File Storage

/* Anything else */

}
}
}
override fun onProgressChanged(id: Int, bytesCurrent: Long, bytesTotal:
Long) {
val percent = ((bytesCurrent as Float) / (bytesTotal as Float) * 100.0)
as Int
Log.d(TAG, "ID: $id is $percent done")
}
override fun onError(id: Int, exception: Exception) {
/* Handle errors */
}
}

// 1If you prefer to long-poll for updates
if (uploadObserver.state == TransferState.COMPLETED) {
/* Handle completion */

}

val bytesTransferred = uploadObserver.bytesTransferred

iOS - Swift

The following example shows how to upload a file to an Amazon S3 bucket.

func uploadData() {
let data: Data = Data() // Data to be uploaded

let expression = AWSS3TransferUtilityUploadExpression()
expression.progressBlock = {(task, progress) in
DispatchQueue.main.async(execute: {
// Do something e.g. Update a progress bar.
D)
}

var completionHandler: AWSS3TransferUtilityUploadCompletionHandlerBlock?
completionHandler = { (task, error) -> Void in
DispatchQueue.main.async(execute: {
// Do something e.g. Alert a user for transfer completion.
// On failed uploads, “error~ contains the error object.
D)
}

let transferUtility = AWSS3TransferUtility.default()

transferUtility.uploadData(data,

bucket: "YourBucket",

key: "YourFileName",

contentType: "text/plain",

expression: expression,

completionHandler: completionHandler).continueWith {

(task) -> AnyObject! in
if let error = task.error {
print("Error: \(error.localizedDescription)")

if let _ = task.result {
// Do something with uploadTask.

71

AWS Mobile Developer Guide
Add User File Storage

}

return nil;

Download a File

Android - Java

To download a file from an Amazon S3 bucket, use AWSMobileClient to get the
AWSConfiguration and AWSCredentialsProvider to create the TransferUtility object.
AWSMobileClient expects an activity context for resuming an authenticated session and creating
the AWSCredentialsProvider.

The following example shows using the TransferUtility in the context of an Activity.
If you are creating TransferUtility from an application context, you can construct the
AWSCredentialsProvider and pass it into TransferUtility to use in forming the
AWSConfiguration object.

import android.app.Activity;
import android.util.Log;

import com.amazonaws.mobile.client.AWSMobileClient;

import com.amazonaws.mobileconnectors.s3.transferutility.TransferUtility;
import com.amazonaws.mobileconnectors.s3.transferutility.TransferState;
import com.amazonaws.mobileconnectors.s3.transferutility.TransferObserver;
import com.amazonaws.mobileconnectors.s3.transferutility.TransferListener;
import com.amazonaws.services.s3.AmazonS3Client;

import java.io.File;
public class YourActivity extends Activity {

@Override

protected void onCreate(Bundle savedInstanceState) {
AWSMobileClient.getInstance().initialize(this).execute();
downloadWithTransferUtility();

}

private void downloadWithTransferUtility() {

TransferUtility transferUtility =
TransferUtility.builder()
.context(getApplicationContext())
.awsConfiguration(AWSMobileClient.getInstance().getConfiguration())
.s3Client(new
AmazonS3Client(AWSMobileClient.getInstance().getCredentialsProvider()))
.build();

TransferObserver downloadObserver =
transferUtility.download(
"s3Folder/s3Key.txt",
new File("/path/to/file/localFile.txt"));

// Attach a listener to the observer to get state update and progress
notifications
downloadObserver.setTransferListener(new TransferListener() {

@Override
public void onStateChanged(int id, TransferState state) {
if (TransferState.COMPLETED == state) {

// Handle a completed upload.

72

AWS Mobile Developer Guide
Add User File Storage

}

@Override

public void onProgressChanged(int id, long bytesCurrent, long bytesTotal) {
float percentDonef = ((float)bytesCurrent/(float)bytesTotal) * 100;
int percentDone = (int)percentDonef;

Log.d("MainActivity", " ID:" + id + " bytesCurrent: " +
bytesCurrent + " bytesTotal: " + bytesTotal + " " + percentDone + "%");
}
@Override

public void onError(int id, Exception ex) {
// Handle errors

}
1)

// If you prefer to poll for the data, instead of attaching a

// listener, check for the state and progress in the observer.

if (TransferState.COMPLETED == downloadObserver.getState()) {
// Handle a completed upload.

}

Log.d("YourActivity", "Bytes Transferrred: " +
downloadObserver.getBytesTransferred());

Log.d("YourActivity", "Bytes Total: " + downloadObserver.getBytesTotal());

}

Android - Kotlin

To download a file from an Amazon S3 bucket, use AWSMobileClient to get the
AWSConfiguration and AWSCredentialsProvider to create the TransferUtility object.
AWSMobileClient expects an activity context for resuming an authenticated session and creating
the AWSCredentialsProvider.

The following example shows using the TransferUtility in the context of an Activity.
If you are creating TransferUtility from an application context, you can construct the
AWSCredentialsProvider and pass it into TransferUtility to use in forming the
AwWSConfiguration object.

import android.app.Activity;
import android.util.Log;

import com.amazonaws.mobile.client.AWSMobileClient;

import com.amazonaws.mobileconnectors.s3.transferutility.TransferUtility;
import com.amazonaws.mobileconnectors.s3.transferutility.TransferState;
import com.amazonaws.mobileconnectors.s3.transferutility.TransferObserver;
import com.amazonaws.mobileconnectors.s3.transferutility.TransferListener;
import com.amazonaws.services.s3.AmazonS3Client;

import java.io.File;

class YourActivity : Activity() {
override fun onCreate(savedInstanceState: Bundle?) {
super.onCreate(savedInstanceState)
setContentView(R.layout.activity_your)

AWSMobileClient.getInstance().initialize(this).execute()
donwloadWithTransferUtility()

73

AWS Mobile Developer Guide
Add User File Storage

private fun downloadWithTransferUtility() {
val transferUtility = TransferUtility.builder()
.context(applicationContext)
.awsConfiguration(AWSMobileClient.getInstance().configuration)

.s3Client(AmazonS3Client(AWSMobileClient.getInstance().credentialsProvider))
build()
val downloadObserver = transferUtility.download(
"s3folder/s3key.txt",
File("/path/to/file/localfile.txt"))

// Attach a listener to get state updates
downloadObserver.transferListener = object : TransferListener() {
override fun onStateChanged(id: Int, state: TransferState) =
when(state) {
TransferState.COMPLETED -> {
/* File has finished downloading */

}
else -> { /* Something else happened */ }
}
override fun onProgressChanged(id: Int, bytesCurrent: Long, bytesTotal:
Long) {
val percent = ((bytesCurrent as Float) / (bytesTotal as Float) * 100.0)
as Int
Log.d(TAG, "ID: $id is $percent done")
}
override fun onError(id: Int, exception: Exception) {
/* Handle errors */
}
}

// If you prefer to poll for the data, instead of attaching a
// listener, check for the state and progress in the observer.
if (downloadObserver.state == TransferState.COMPLETED) {

// Handle a completed upload.

}
Log.d("YourActivity", "Bytes Transferrred:
${downloadObserver.bytesTransferred}");
}
}
iOS - Swift

The following example shows how to download a file from an Amazon S3 bucket.

func downloadData() {
let expression = AWSS3TransferUtilityDownloadExpression()
expression.progressBlock = {(task, progress) in DispatchQueue.main.async(execute: {
// Do something e.g. Update a progress bar.
D)
}

var completionHandler: AWSS3TransferUtilityDownloadCompletionHandlerBlock?
completionHandler = { (task, URL, data, error) -> Void in
DispatchQueue.main.async(execute: {
// Do something e.g. Alert a user for transfer completion.
// On failed downloads, ~“error~ contains the error object.

»
¥

let transferUtility = AWSS3TransferUtility.default()

74

AWS Mobile Developer Guide
Add Cloud Logic

transferUtility.downloadData(
fromBucket: "YourBucket",
key: "YourFileName",
expression: expression,
completionHandler: completionHandler
).continueWith {
(task) -> AnyObject! in if let error = task.error {
print("Error: \(error.localizedDescription)")

}

if let _ = task.result {
// Do something with downloadTask.

}

return nil;

Next Steps

For further information about TransferUtility capabilities, see Transfer Files and Data Using
TransferUtility and Amazon S3 (p. 194).

For sample apps that demonstrate TransferUtility capabilities, see Android S3 TransferUtility Sample
and iOS S3 TransferUtility Sample.

Looking for Amazon Cognito Sync? If you are a new user, use AWS AppSync instead. AppSync is a

new service for synchronizing application data across devices. Like Cognito Sync, AppSync enables
synchronization of a user's own data, such as game state or app preferences. AppSync extends these
capabilities by allowing multiple users to synchronize and collaborate in real-time on shared data, such
as a virtual meeting space or chatroom. Start building with AWS AppSync now

Add Cloud APIs to Your Mobile App with Amazon API
GateWay and AWS Lambda

Cloud Logic Overview

Add RESTful APIs handled by your serverless Lambda functions to extend your mobile app to the range
of AWS services and beyond. In Mobile Hub, enabling the Cloud Logic (p. 332) feature uses Amazon API
Gateway and AWS Lambda services to provide these capabilities.

Set Up Your Backend

1. Complete the Get Started (p. 2) steps before your proceed.

. Enable Cloud Logic: Open your project in Mobile Hub and choose the Cloud Logic tile to enable the

feature.

. Create a new API or import one that you created in the API Gateway console.

a. To create a new API choose Create an API.
b. Type an APl Name and Description.

¢. Configure your Paths. Paths are locations to the serverless AWS Lambda functions that handle
requests to your API.

Choose Create API to deploy a default API and its associated handler function. The default handler
is a Node.js function that echoes JSON input that it receives. For more information, see Using AWS
Lambda with Amazon API Gateway.

75

https://github.com/awslabs/aws-sdk-android-samples/tree/master/S3TransferUtilitySample
https://github.com/awslabs/aws-sdk-ios-samples/tree/master/S3TransferUtility-Sample
https://aws.amazon.com/appsync/
https://aws.amazon.com/appsync/
http://docs.aws.amazon.com/apigateway/latest/developerguide/
http://docs.aws.amazon.com/apigateway/latest/developerguide/
http://docs.aws.amazon.com/lambda/latest/dg/
https://console.aws.amazon.com/mobilehub
http://docs.aws.amazon.com/apigateway/latest/developerguide/welcome.html
with-on-demand-https.html
with-on-demand-https.html

AWS Mobile Developer Guide
Add Cloud Logic

The definition of APIs and paths configured in a Mobile Hub project are captured in an AWS
CloudFormation template. The body of a request containing a template is limited to 51,200 bytes,
see AWS CloudFormation Limits for details. If your API definition is too large to fit this size, you
can use the AWS API Gateway Console to create your APl and the import it into your Mobile Hub
project.

4. When you are done configuring the feature and the last operation is complete, choose your project
name in the upper left to go the project details page. The banner that appears also links there.

-EIES Mobile Hub new project Hosting and Streaming Support

new project Analytics | Resources

@ Your backend has been updated.

5. Choose Integrate on the app card.

. Docs &
android o

Backend features m

If you have created apps for more than one platform, the Integrate button of each that is affected by
your project changes will flash, indicating that there is an updated configuration file available for each
of those versions.

6. Choose Download Cloud Config and replace the old the version of awsconfiguration. json with
the new download. Your app now references the latest version of your backend.

7. Choose Swift Models to download APl models that were generated for your app. These files provide
access to the request surface for the API Gateway API you just created. Choose Next and follow the
Cloud API documentation below to connect to your backend.

Connect to Your Backend

Use the following steps to add AWS Cloud Logic to your app.
Android - Java

1. Set up AWS Mobile SDK components with the following Set Up Your Backend (p. 2) steps.
a. Add the following to your app/build.gradle:

dependencies{
// other dependencies . . .
implementation 'com.amazonaws:aws-android-sdk-apigateway-core:2.6.+"'

}

b. For each Activity where you make calls to APl Gateway, declare the following imports. Replace
the portion of the first declaration, denoted here as idABCD012345 . NAME-OF-YOUR-API-
MODEL-CLASS, with class id and name of the API model that you downloaded from your
Mobile Hub project.

76

http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/cloudformation-limits.html
https://console.aws.amazon.com/apigateway/

AWS Mobile Developer Guide
Add Cloud Logic

You can find these values at the top of the . /src/main/java/com/amazonaws /mobile/
api/API-CLASS-ID/TestMobileHubClient. java file of the download

// This statement imports the model class you download from |AMH]|.
import com.amazonaws.mobile.api.idABCD012345.NAME-OF-YOUR-API-MODEL-
CLASSMobileHubClient;

import com.amazonaws.mobile.auth.core.IdentityManager;

import com.amazonaws.mobile.config.AWSConfiguration;

import com.amazonaws.mobileconnectors.apigateway.ApiClientFactory;
import com.amazonaws.mobileconnectors.apigateway.ApiRequest;
import com.amazonaws.mobileconnectors.apigateway.ApiResponse;
import com.amazonaws.util.IOUtils;

import com.amazonaws.util.StringUtils;

import java.io.InputStream;

¢. The location where you downloaded the APl model file(s) contains a folder for each Cloud Logic
API you created in your Mobile Hub project. The folders are named for the class ID assigned to
the API by API Gateway. For each folder:

i. In atext editor, open . /src/main/java/com/amazonaws/mobile/api/YOUR-API-
CLASS-ID/YOUR-API-CLASS-NAMEMobileHubClient. java.

ii. Copy the package name at the top of the file with the form:
com.amazonaws.mobile.api.{api-class-id}.

iii. In Android Studio, right-choose app/java, and then choose New > Package.
iv. Paste the package name you copied in a previous step and choose OK.

v. Drag and drop the contents of the API class folder into the newly created package. The
contents include YOUR-API-CLASS-NAMEMobileHubClient. java and the model folder.

. Invoke a Cloud Logic API.

The following code shows how to invoke a Cloud Logic APl using your API's client class, model,
and resource paths.

import android.support.v7.app.AppCompatActivity;
import android.os.Bundle;

import android.util.Log;

import com.amazonaws.http.HttpMethodName;

import java.io.InputStream;

import java.util.HashMap;

import com.amazonaws.mobile.client.AWSMobileClient;

import com.amazonaws.mobileconnectors.api.YOUR-API-CLASS-ID.YOUR-API-CLASS-
NAMEMobilehubClient;

import com.amazonaws.mobileconnectors.apigateway.ApiClientFactory;

import com.amazonaws.mobileconnectors.apigateway.ApiRequest;

import com.amazonaws.mobileconnectors.apigateway.ApiResponse;

import com.amazonaws.util.StringUtils;

public class MainActivity extends AppCompatActivity {
private static final String LOG_TAG = MainActivity.class.getSimpleName();
private YOUR-API-CLASS-NAMEMobileHubClient apiClient;
@Override
protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);

setContentView(R.layout.activity_main);

// Create the client

77

AWS Mobile Developer Guide
Add Cloud Logic

apiClient = new ApiClientFactory()

.credentialsProvider (AWSMobileClient.getInstance().getCredentialsProvider())
.build(YOUR-API-CLASS-NAMEMobileHubClient.class);

}

public callCloudLogic() {
// Create components of api request
final String method = "GET";

final String path = "/items";

final String body = "";
final byte[] content = body.getBytes(StringUtils.UTF8);

final Map parameters = new HashMap<>();
parameters.put("lang", "en_US");

final Map headers = new HashMap<>();

// Use components to create the api request
ApiRequest localRequest =
new ApiRequest(apiClient.getClass().getSimpleName())

.withPath(path)
.withHttpMethod(HttpMethodName.valueOf(method))
.withHeaders(headers)
.addHeader("Content-Type", "application/json")
.withParameters(parameters);

// Only set body if it has content.
if (body.length() > 0) {
localRequest = localRequest
.addHeader("Content-Length", String.valueOf(content.length))
.withBody(content);

}

final ApiRequest request = localRequest;

// Make network call on background thread
new Thread(new Runnable() {
@Override
public void run() {
try {
Log.d(LOG_TAG,
"Invoking API w/ Request : " +
request.getHttpMethod() + ":" +
request.getPath());

final ApiResponse response = apiClient.execute(request);
final InputStream responseContentStream = response.getContent();

if (responseContentStream != null) {
final String responseData =
IOUtils.toString(responseContentStream);
Log.d(LOG_TAG, "Response : " + responseData);

}

Log.d(LOG_TAG, response.getStatusCode() + " " +
response.getStatusText());

} catch (final Exception exception) {
Log.e(LOG_TAG, exception.getMessage(), exception);
exception.printStackTrace();

78

AWS Mobile Developer Guide
Add Cloud Logic

}
}).start();

Android -

Kotlin

1. Set up AWS Mobile SDK components with the following Set Up Your Backend (p. 2) steps.

da

Add the following to your app/build.gradle:

dependencies{
// other dependencies .
implementation 'com.amazonaws:aws-android-sdk-apigateway-core:2.6.+"

}

. For each Activity where you make calls to API Gateway, declare the following imports. Replace

the portion of the first declaration, denoted here as idABCD012345 . NAME-OF-YOUR-API-
MODEL-CLASS, with class id and name of the APl model that you downloaded from your
Mobile Hub project.

You can find these values at the top of the . /src/main/java/com/amazonaws/mobile/
api/API-CLASS-ID/TestMobileHubClient. java file of the download.

// This statement imports the model class you download from |AMH]|.
import com.amazonaws.mobile.api.idABCD012345.NAME-OF-YOUR-API-MODEL-
CLASSMobileHubClient;

import com.amazonaws.mobile.auth.core.IdentityManager;

import com.amazonaws.mobile.config.AWSConfiguration;

import com.amazonaws.mobileconnectors.apigateway.ApiClientFactory;
import com.amazonaws.mobileconnectors.apigateway.ApiRequest;
import com.amazonaws.mobileconnectors.apigateway.ApiResponse;
import com.amazonaws.util.IOUtils;

import com.amazonaws.util.StringUtils;

import java.io.InputStream;

. The location where you downloaded the APl model file(s) contains a folder for each Cloud Logic

APl you created in your Mobile Hub project. The folders are named for the class ID assigned to
the API by API Gateway. For each folder:

i. In atext editor, open . /src/main/java/com/amazonaws/mobile/api/YOUR-API-
CLASS—ID/YOUR—API—CLASS—NAMEMObileHubClient.java

ii. Copy the package name at the top of the file with the form:
com.amazonaws .mobile.api.{api-class-id}.

iii. In Android Studio, right-choose app/java, and then choose New > Package.
iv. Paste the package name you copied in a previous step and choose OK.

v. Drag and drop the contents of the API class folder into the newly created package. The
contents include YOUR-API-CLASS-NAMEMobileHubClient. java and the model folder.

2. Invoke a Cloud Logic API.

The following code shows how to invoke a Cloud Logic API using your API's client class, model,
and resource paths.

import android.support.v7.app.AppCompatActivity;
import android.os.Bundle;

79

AWS Mobile Developer Guide
Add Cloud Logic

import android.util.Log;

import com.amazonaws.http.HttpMethodName;
import java.io.InputStream;

import java.util.HashMap;

import com.amazonaws.mobile.client.AWSMobileClient;

import com.amazonaws.mobileconnectors.api.YOUR-API-CLASS-ID.YOUR-API-CLASS-
NAMEMobilehubClient;

import com.amazonaws.mobileconnectors.apigateway.ApiClientFactory;

import com.amazonaws.mobileconnectors.apigateway.ApiRequest;

import com.amazonaws.mobileconnectors.apigateway.ApiResponse;

import com.amazonaws.util.StringUtils;

class MainActivity : AppCompatActivity() {
companion object {
private val TAG = this::class.java.simpleName

}

private var apiClient: YOUR-API-CLASS-NAMEMobileHubClient? = null

override fun onCreate(savedInstanceState: Bundle?) {
super.onCreate(savedInstanceState)
setContentView(R.layout.activity_main)

apiClient = ApiClientFactory()
.credentialsProvider (AWSMobileClient.getInstance().credentialsProvider)
.build(YOUR-API-CLASS-NAMEMobileHubClinet::class.java)

fun callCloudLogic(body: String) {
val parameters = mapOf("lang" to "en_ US")
val headers = mapOf("Content-Type" to "application/json")

val request = ApiRequest(apiClient::class.java.simpleName)
.withPath("/items")
.withHttpMethod(HttpMethod.GET)
.withHeaders(headers)
.withParameters(parameters)
if (body.isNotEmpty()) {
val content = body.getBytes(StringUtils.UTF8)
request
.addHeader("Content-Length", String.valueOf(content.length))
.withBody(content)
}

thread(start = true) {
try {
Log.d(TAG, "Invoking API")
val response = apiClient.execute(request)
val responseContentStream = response.getContent()
if (responseContentStream != null) {
val responseData = IOUtils.toString(responseContentStream)
// Do something with the response data here
}
} catch (ex: Exception) {
Log.e(TAG, "Error invoking API")
}

iOS - Swift

1. Set up AWS Mobile SDK components with the following Set Up Your Backend (p. 2) steps.

80

AWS Mobile Developer Guide
Add Cloud Logic

a. Podfile that you configure to install the AWS Mobile SDK must contain:

platform :ios, '9.0'

target :'YOUR-APP-NAME' do
use_frameworks!

pod 'AWSAuthCore', '~> 2.6.13'
pod 'AWSAPIGateway', '~> 2.6.13'
other pods

end

Run pod install --repo-update before you continue.

If you encounter an error message that begins"[!] Failed to connect to GitHub to
update the CocoaPods/Specs . . ." andyourinternet connectivity is working, you may
need to update openssl and Ruby.

b. Classes that call APl Gateway APIs must use the following import statements:

import AWSAuthCore
import AWSCore
import AWSAPIGateway

¢. Add the backend service configuration and APl model files that you downloaded from the
Mobile Hub console, The APl model files provide an API calling surface for each API Gateway
API they model.

i. From the location where you downloaded the data model file(s), drag and drop the . /
AmazonAws/API folder into the Xcode project folder that contains AppDelegate.swift.

Select Copy items if needed and Create groups, if these options are offered.

If your Xcode project already contains a Bridging_Header.h file then open ./
AmazonAws/Bridging Header.h, copy the import statement it contains, and paste it into
your version of the file.

If your Xcode project does not contain a Bridging_Header.h file then:

A. Drag and drop . /AmazonAws/Bridging_Header.h into the Xcode project folder that
contains AppDelegate.swift

B. Choose your project root in Xcode, then choose Build Settings, and search for "bridging
headers"

C. Choose Objective-C Bridging Header, press your return key, and type the path within
your Xcode project:

your-project-name/.../Bridging_Header.h

. Invoke a Cloud Logic API.

To invoke a Cloud Logic API, create code in the following form and substitute your API's client
class, model, and resource paths.

import UIKit

import AWSAuthCore
import AWSCore

import AWSAPIGateway
import AWSMobileClient

// ViewController or application context .

81

https://stackoverflow.com/questions/38993527/cocoapods-failed-to-connect-to-github-to-update-the-cocoapods-specs-specs-repo/48962041#48962041

AWS Mobile Developer Guide
Add Cloud Logic

func doInvokeAPI() {
// change the method name, or path or the query string parameters here as
desired
let httpMethodName = "POST"
// change to any valid path you configured in the API
let URLString = "/items"
let queryStringParameters = ["keyl":"{valuel}"]
let headerParameters = [
"Content-Type": "application/json",
"Accept": "application/json"

let httpBody = "{ \n " +
"\"keyl\":\"valuell\", \n " +
"\"key2\":\"value2\", \n " +
"\"key3\":\"value3\"\n}"

// Construct the request object
let apiRequest = AWSAPIGatewayRequest(httpMethod: httpMethodName,
urlString: URLString,
queryParameters: queryStringParameters,
headerParameters: headerParameters,
httpBody: httpBody)

// Create a service configuration object for the region your AWS API was
created in
let serviceConfiguration = AWSServiceConfiguration(
region: AWSRegionType.USEastl,
credentialsProvider:
AWSMobileClient.sharedInstance().getCredentialsProvider())

YOUR-API-CLASS-NAMEMobileHubClient.register(with: serviceConfiguration!,
forKey: "CloudLogicAPIKey")

// Fetch the Cloud Logic client to be used for invocation
let invocationClient =
YOUR-API-CLASS-NAMEMobileHubClient(forKey: "CloudLogicAPIKey")

invocationClient.invoke(apiRequest).continueWith { (
task: AWSTask) -> Any? in

if let error = task.error {
print("Error occurred: \(error)")
// Handle error here
return nil

}

// Handle successful result here
let result = task.result!
let responseString =
String(data: result.responseData!, encoding: .utf8)

print(responseString)
print(result.statusCode)

return nil

82

AWS Mobile Developer Guide
Add Messaging

Add Messaging to Your Mobile App with Amazon
Pinpoint

Overview

Engage your users more deeply by tying their app usage behavior to messaging campaigns.

When you enable the AWS Mobile Hub Messaging and Analytics (p. 340) feature, your app is registered
with the Amazon Pinpoint service. You can define User Segments and send E-mail, SMS, and Push
Notification (p. 43) messages to those recipients through the Amazon Pinpoint console.

Amazon Pinpoint also enables you to gather and visualize your app's Analytics. The metrics you gather
can be as simple as session start and stop data, or you can customize them to show things like how
closely actual behavior matches your predicted model.

You can then algorithmically tie messaging campaigns to user behavior. For instance, send a discount
mail to frequent users, or send a push notification that initiates a data sync for users that have selected a
certain category in a feature of your app.

Set Up Your Backend

To set up email or SMS as part of a Amazon Pinpoint campaign take the following steps.

To setup your app to receive Push Notifications from Amazon Pinpoint, see Add Push Notifications to
Your Mobile App with Amazon Pinpoint (p. 43)

1. Complete the Get Started (p. 2) steps before your proceed.
2. For Email: Choose the Messaging and Analytics tile to enable the

feature.

a. Choose Email, and then choose Enable.

b. Choose the Amazon Pinpoint console link at the bottom of the descriptive text on the left.
¢. Choose Email in the Amazon Pinpoint console Channels tab.
d

. Choose Email address, type the address your messages should come from, and then choose
verify at the end of the entry field.

The email account you enter will receive an email requesting your approval for Amazon
Pinpoint to use that account as the sender address for emails sent by the system. The status
of Pending Verification is displayed in the console entry field until Amazon Pinpoint has
processed your approval.

e. Choose Email domain, type the domain your messages should come from, and then choose
verify at the end of the entry field.

A dialog is displayed providing the name and value of the TXT record you must add to the
domain's settings. The status of Pending Verification is displayed in the entry field until
the console processes your approval.

Add a default user name to Default from address.
f. Choose Save.
g. For information about sending mail from Amazon Pinpoint, see Sending an Email Message.
a. For SMS: Choose the Messaging and Analytics tile to enable the feature.
i. Choose SMS, and then choose Enable.
ii. Choose the the Amazon Pinpoint console link at the bottom of the descriptive text on the left.
iii. Choose SMS in the Amazon Pinpoint console Channels tab.

83

messages.html#messages-email

AWS Mobile Developer Guide
Add Conversational Bots

iv. Adjust the options for Default message type, Account spend limit, and Default sender ID. For
more information on these options, see Updating SMS Settings.

v. For information about sending SMS messages from Amazon Pinpoint, see Sending an SMS
Message.

Connect to your backend

The AWS Mobile SDK is not required to receive Email or SMS messages from Amazon Pinpoint.

Add Conversational Bots to Your Mobile App with
Amazon Lex

Overview

Add the natural language understanding that powers Amazon Alexa to your mobile app. The Mobile
HubConversational Bots (p. 346) feature provides ready-made bot templates using the Amazon Lex
service.

Set Up Your Backend

1. Complete the Get Started (p. 2) steps before your proceed.

2. Enable Conversational Bots: Open your project in Mobile Hub and choose the Conversational Bots
tile to enable the feature.

a. Choose one of the sample Bots or import one that you have created in the Amazon Lex console.

3. When the operation is complete, an alert will pop up saying "Your Backend has been updated",
prompting you to download the latest copy of the cloud configuration file. If you're done configuring
the feature, choose the banner to return to the project details page.

-EIE-’S Mobile Hub new project Hosting and Streaming D Zucker Support

new project Analytics | Resources

4. From the project detail page, every app that needs to be updated with the latest cloud configuration
file will have a flashing Integrate button. Choose the button to enter the integrate wizard.

. Docs &
android o

Backend features m

5. Update your app with the latest copy of the cloud configuration file. Your app now references the
latest version of your backend. Choose Next and follow the Cloud API documentation below to
connect to your backend.

Connect to your backend

To add AWS Mobile Conversational Bots to your app

84

channels-sms-manage.html#channels-sms-manage-settings
messages.html#messages-sms
messages.html#messages-sms
http://docs.aws.amazon.com/lex/latest/dg/
http://docs.aws.amazon.com/lex/latest/dg/
https://console.aws.amazon.com/mobilehub
http://docs.aws.amazon.com/lex/latest/dg/what-is.html

AWS Mobile Developer Guide
Add Conversational Bots

Android - Java

1. Set up AWS Mobile SDK components with the following Set Up Your Backend (p. 2) steps.
a. Add the following permissions to your AndroidManifest.xml:

<uses-permission android:name="android.permission.RECORD_AUDIO" />
<uses-permission android:name="android.permission.WRITE_EXTERNAL_STORAGE" />

b. Add the following to your app/build.gradle:

dependencies{
implementation ('com.amazonaws:aws-android-sdk-lex:2.6.+@aar') {transitive =
true;}

}

c. For each Activity where you make calls to Amazon Lex, import the following APIs.

import com.amazonaws.mobileconnectors.lex.interactionkit.Response;
import com.amazonaws.mobileconnectors.lex.interactionkit.config.InteractionConfig;
import com.amazonaws.mobileconnectors.lex.interactionkit.ui.InteractiveVoiceView;

2. Add a voice button to an activity or fragment layout

a. Add a voice_component to your layout file.

<com.amazonaws.mobileconnectors.lex.interactionkit.ui.InteractiveVoiceView
android:id="@+id/voiceInterface"

layout="@layout/voice_component"

android:layout_width="200dp"

android:layout_height="200dp"/>

b. In your strings.xml file add the region for your bot. Note: Currently bots are only supported
in US Virginia East (us-east-1).

<string name="aws_region">us-east-1</string>

c. Initialize the voice button

Add the following init () function to the onCreate() of the activity where your Bot will be
used.

Initialize AWSMobileClient before the call to init(), as the InteractiveVoiceView
in the function connects to Amazon Lex using the credentials provider object created by
AWSMobileClient.

import com.amazonaws.mobile.client.AWSMobileClient;

import com.amazonaws.mobile.client.AWSStartupHandler;

import com.amazonaws.mobile.client.AWSStartupResult;

import com.amazonaws.mobileconnectors.lex.interactionkit.Response;

import com.amazonaws.mobileconnectors.lex.interactionkit.config.InteractionConfig;
import com.amazonaws.mobileconnectors.lex.interactionkit.ui.InteractiveVoiceView;

public class MainActivity extends AppCompatActivity {

@Override

protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.activity_main);

AWSMobileClient.getInstance().initialize(this, new AWSStartupHandler() {
@Override

85

AWS Mobile Developer Guide
Add Conversational Bots

public void onComplete(AWSStartupResult awsStartupResult) {
Log.d("YourMainActivity", "AWSMobileClient is instantiated and you

are connected to AWS!");

}

}) .execute();
init();
}

public void init(){
InteractiveVoiceView voiceView =
(InteractiveVoiceView) findvViewById(R.id.voiceInterface);

voiceView.setInteractiveVoiceListener/(
new InteractiveVoiceView.InteractiveVoiceListener() {

@Override

public void dialogReadyForFulfillment(Map slots, String intent)

Log.d(LOG_TAG, String.format(

Locale.US,
"Dialog ready for fulfillment:\n\tIntent: %s\n

\tSlots: %s",

intent,
slots.toString()));
}
@Override
public void onResponse(Response response) {
Log.d(LOG_TAG, "Bot response: " +
response.getTextResponse());
}
@Override
public void onError(String responseText, Exception e) {
Log.e(LOG_TAG, "Error: " + responseText, e);
}

DK

voiceView.getViewAdapter().setCredentialProvider (AWSMobileClient.getInstance().getC

//replace parameters with your botname, bot-alias

voiceView.getViewAdapter()

.setInteractionConfig(
new InteractionConfig("YOUR-BOT-NAME", "$LATEST"));

voiceView.getViewAdapter()
.setAwsRegion(getApplicationContext()
.getString(R.string.aws_region));

redentials]

Android - Kotlin

1. Set up AWS Mobile SDK components with the following Set Up Your Backend (p. 2) steps.

a. Add the following permissions to your AndroidManifest.xml:

<uses-permission android:name="android.permission.RECORD_AUDIO" />
<uses-permission android:name="android.permission.WRITE_EXTERNAL_STORAGE" />

b. Add the following to your app/build.gradle:

86

AWS Mobile Developer Guide
Add Conversational Bots

dependencies{
implementation ('com.amazonaws:aws-android-sdk-lex:2.6.+@aar') {transitive =

true; }

}

¢. For each Activity where you make calls to Amazon Lex, import the following APIs.

import com.amazonaws.mobileconnectors.lex.interactionkit.Response;
import com.amazonaws.mobileconnectors.lex.interactionkit.config.InteractionConfig;
import com.amazonaws.mobileconnectors.lex.interactionkit.ui.InteractiveVoiceView;

2. Add a voice button to an activity or fragment layout

a. Add a voice_component to your layout file.

<com.amazonaws.mobileconnectors.lex.interactionkit.ui.InteractiveVoiceView
android:id="@+id/voiceInterface"

layout="@layout/voice_component"

android:layout_width="200dp"

android:layout_height="200dp"/>

b. In your strings.xml file add the region for your bot. Note: Currently bots are only supported
in US Virginia East (us-east-1).

<string name="aws_region">us-east-1</string>

c. Initialize the voice button

In the onCreate() of the activity where your Bot will be used, call init().

fun init() {
voiceInterface.interactiveVoiceListener =
object : InteractiveVoiceView.InteractiveVoiceListener() {
override fun dialogReadyFOrFulfillment(slots: Map, intent: String) {
Log.d(TAG, "Dialog ready for fulfillment:\n\tIntent: $intent")

}

override fun onResponse(response: Response) {
Log.d(TAG, "Bot response: ${response.textResponse}")

}

override fun onError(responseText: String, e: Exception) {
Log.e(TAG, "Error: ${e.message}")
¥
}

with (voiceInterface.viewAdapter) {
credentialsProvider = AWSMobileClient.getInstance().credentialsProvider

interactionConfig = InteractionConfig("YOUR-BOT-NAME", "$LATEST")
awsRegion = applicationContext.getString(R.string.aws_region)

i0S - Swift
1. Set up AWS Mobile SDK components with the following Set Up Your Backend (p. 2) steps.
a. Podfile that you configure to install the AWS Mobile SDK must contain:

platform :ios, '9.0'

87

AWS Mobile Developer Guide
Add Conversational Bots

target :'YOUR-APP-NAME ' do
use_frameworks!

pod 'AWSLex', '~> 2.6.13'
other pods

end

Run pod install --repo-update before you continue.

If you encounter an error message that begins"[!] Failed to connect to GitHub to
update the CocoaPods/Specs . . ." and your internet connectivity is working, you may
need to update openssl and Ruby.

b. Classes that call Amazon Lex APIs must use the following import statements:

import AWSCore
import AWSLex

2. Add permissions to your info.plist that allow the app to use the microphone of a device.

<plist version = "1.0"></plist>
<dict>
<l-= . L. ==>
<key>NSMicrophoneUsageDescription</key>
<string>For demonstration of conversational bots</string>
<l-= . .. ==>
</dict>

3. Add your backend service configuration to the app.

From the location where your Mobile Hub configuration file was downloaded in a previous step,
drag awsconfiguration. json into the folder containing your info.plist file in your Xcode
project.
Select Copy items if needed and Create groups, if these options are offered.

4. Add a voice button Ul element that will let your users speak to Amazon Lex to an activity.
a. Create a UIView in a storyboard or xib file.
b. Map the UIView to the AWSLexVoiceButton class of the AWS Mobile SDK.

¢. Link the UIView to your ViewController.

88

https://stackoverflow.com/questions/38993527/cocoapods-failed-to-connect-to-github-to-update-the-cocoapods-specs-specs-repo/48962041#48962041

AWS Mobile Developer Guide
Add Conversational Bots

B B- - - View Lex Bution B View_swift) No Selection + a ¢
Running i Custom Class
F Ciass | AWSLoxVoiceButtor] O K

Modile [~

Iderainy

Festoration ID

User Defined Runtime Attributes

Key Path Type Value

Document

x
Object 10 B58-Tr-LJr

Flexible Space Bar Button
A tam pia

5. Register the voice button.

The following code shows how use the viewDidLoad method of your View Controller to enable
your voice button to respond to Amazon Lex success and error messages The code conforms the
class to AWSLexVoiceButtonDelegate. It initializes the button by binding it to the bot you
configured in your Mobile Hub project, and registers the button as the AWSLexVoiceButtonKey
of your Amazon Lex voice interaction client.

import UIKit
import AWSLex
import AWSAuthCore

class VoiceChatViewController: UIViewController, AWSLexVoiceButtonDelegate {
override func viewDidLoad() {

// Set the bot configuration details
// You can use the configuration constants defined in AWSConfiguration.swift

file
let botName = "YOUR-BOT-NAME"
let botRegion: AWSRegionType = "YOUR-BOT-REGION"
let botAlias = "$LATEST"

// set up the configuration for AWS Voice Button

let configuration = AWSServiceConfiguration(region: botRegion,
credentialsProvider: AWSMobileClient.sharedInstance().getCredentialsProvider())

let botConfig =
AWSLexInteractionKitConfig.defaultInteractionKitConfig(withBotName: YOUR-BOT-NAME,
botAlias: :YOUR-BOT-ALIAS)

// register the interaction kit client for the voice button using the
AWSLexVoiceButtonKey constant defined in SDK

AWSLexInteractionKit.register(with: configuration!,
interactionKitConfiguration: botConfig, forKey: AWSLexVoiceButtonKey)

super.viewDidLoad()

(self.voiceButton as AWSLexVoiceButton).delegate = self

6. Handle Amazon Lex success and error messages by adding the following delegate methods for
the Voice Button in your View Controller.

89

AWS Mobile Developer Guide
Tutorials

func voiceButton(_ button: AWSLexVoiceButton, on response: AWSLexVoiceButtonResponse)
{

// handle response from the voice button here

print("on text output \(response.outputText)")

}

func voiceButton(_ button: AWSLexVoiceButton, onError error: Error) {
// handle error response from the voice button here
print("error \(error)")

Tutorials

Notes App Tutorial

Build a simple note taking application. Start with an offline version of our data-driven app. Cloud-enable
the app, adding app analytics, authentication and cloud data storage through AWS services.

« Android Notes Tutorial (p. 90)

« i0S Notes Tutorial (p. 114)

A Simple Note-taking App

Start with a working app and then add cloud enabled features. In this tutorial you will take a working
app, driven from locally stored data, and then:

« Add analytics to your app (p. 94) so you can view demographic information about your users.

o Add a simple sign-in/sign-up flow (p. 101) for authentication.

o Access data stores in the AWS (p. 105) cloud, so that a user's notes are available to them on any
device with the app installed.

90

AWS Mobile Developer Guide
Android Notes App

L3> =4 Tz - Tedemwmcar= B Bl s (T

You should be able to complete the setup section of this tutorial within 10-15 minutes after you have

installed all required software. Once you complete the instructions on this page, you can run the project
on your local system.

Getting Started

Before beginning, you must:

91

AWS Mobile Developer Guide
Android Notes App

« Download and install Android Studio version 3.0.1 or later.
« Download an install Android SDK version 8.0 (Oreo), API level 26.

« Install an Android Emulator - the app works with both phone and tablet emulators (for example, the
Nexus 5X or Pixel C).
Windows Specific Instructions

« Install Git for Windows.

Mac Specific Instructions

« Install XCode using the Mac App Store.

« Configure the XCode command line tools. Run xcode-select --install from a Terminal window.

Why do | need XCode?

The XCode package includes command line tools that are used on a Mac to assist with software
development. You don't need to run the Ul XCode application.

Download the Source code

1. Get the tutorial source code using one of the following choices:
« Download the source code as a ZIP file.

« Browse to https://github.com/aws-samples/aws-mobile-android-notes-tutorial/ and clone or fork
the repository (sign up for GitHub account, if you do not have one).

Compile the Source Code

To compile the source code:

. Start Android Studio.
. If you have a project open already, choose File > Close Project.
. Choose Open an existing Android Studio project.

A W N =

. Find and choose the aws-mobile-android-notes-tutorial-master project in your file system, then
choose OK.

92

https://developer.android.com/studio/index.html
https://developer.android.com/studio/intro/update.html#sdk-manager
https://developer.android.com/studio/run/managing-avds.html
https://git-scm.com/download/win
https://itunes.apple.com/us/app/xcode/id497799835?mt=12
https://github.com/aws-samples/aws-mobile-android-notes-tutorial/archive/master.zip
https://github.com/aws-samples/aws-mobile-android-notes-tutorial/
https://github.com/join?source=header-home

AWS Mobile Developer Guide
Android Notes App

El| 8= E BS . aws-mobile-android-n... <] Q
e > B aws-mobile-android-notes-tutorial-master » app 4
ew * aws-mobile...l-master.iml
£ WorkDocs . build .
7Y iCloud Drive > M build.gradle
he » L]
EI Desktop CODE_OF_CONDUCT.md
> H CONTRIBUTING.md
#% Applications pp * gradle >
.)
@ BT ipp ¥ gradle.properties
L M gradlew
© Downloads » W gradlew.bat
e L4 B LICENSE
VICeSL
)) > ® LICENSE.txt
(© Remote Disc AM W local properties
AM o NOTICE.txt
. ® README.md
AM B settings.gradle
| 3
[]
>
New Folder Cancel Open

5. Select Build > Make Project from the menu bar.

The compilation step should complete with no errors. Errors are displayed within the Messages window,
available on the status bar at the bottom of the project.

Run the Project in an Emulator

Create a new emulator if you have not done so already:

. Select Tools > Android > AVD Manager.
. Choose Create Virtual Device....
. Select Phone > Nexus 5X, then choose Next.
. Select the x86 Images tab, then select Android 8.0 (Google APIs).
« If you have not previously downloaded the image, you can download it from this screen.
. Choose Next.
6. Choose Finish.
7. Close the AVD Manager.

A NN =

vl

Run the project in an emulator.

1. Select Run > Run 'app'.
2. Select the Nexus 5X API 26 virtual device.
3. Choose OK.

The Android emulator will boot (if it is not already started) and the application will run. You should
be able to interact with the application as you would any other mobile app. Try pressing on the + at
the bottom to create a note, or choose a note to show the editor screen. A unique ID for each note is
displayed in the list view underneath the note's title.

93

AWS Mobile Developer Guide
Android Notes App

Running into Problems

The most common problems at this stage involve issues with the installation of Java, Android Studio,
the Android SDK or the Android Emulator. Google provides detailed instructions on Android Studio and
dependent features.

Next Steps

Next, integrate application analytics (p. 94) into your project.

Add Analytics to the Notes App

In the previous section (p. 90) of this tutorial, we installed Android Studio, downloaded a sample
note-taking app from GitHub, then compiled and ran it in the Android Emulator. This tutorial assumes
you have completed the those steps. In this section, we will extend the notes app to include application
analytics. Application analytics allow us to gather demographic information about the application usage.

You should be able to complete this section in 10-15 minutes.

Set Up Your Back End

To start, set up the mobile backend resources in AWS:

1. Open the AWS Mobile Hub console.
« If you do not have an AWS account, sign up for the AWS Free Tier.

2. Choose Create on the upper left, and the type android-notes-app for the name of the Mobile Hub
project.

3. Choose Next, choose Android, and then choose Add.

4. Choose Download Cloud Config, and save awsconfiguration. json. This file the configuration to
connect your app to your backend.

5. Choose Next and then choose Done to create the project.

Used in this section AWS Mobile Hub: Configure your mobile app's
AWS backend in minutes, and then to manage
those resources as your app evolves.

Add Permissions to the AndroidManifest.xml

1. Open the project in Android Studio.

2. Choose Project on the left side of the project to open the project browser. Find the app manifest by
changing the project browser view menu at the top to Android, and opening the app/manifests
folder.

3. Add the INTERNET, ACCESS_NETWORK_STATE, and ACCESS_WIFI_STATE: permissions to your
project's AndroidManifest.xml file.

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.amazonaws .mobile.samples.mynotes">

94

https://developer.android.com/studio/index.html
https://console.aws.amazon.com/mobilehub/home/
https://aws.amazon.com/free/
https://console.aws.amazon.com/mobilehub/home/

AWS Mobile Developer Guide
Android Notes App

<uses-permission android:name="android.permission.INTERNET"/>
<uses-permission android:name="android.permission.ACCESS_NETWORK_STATE"/>
<uses-permission android:name="android.permission.ACCESS_WIFI_STATE"/>

<application
android:allowBackup="true"
android:icon="@mipmap/ic_launcher"
android:label="@string/app_name"
android:roundIcon="@mipmap/ic_launcher_round"
android:supportsRtl="true"
android:theme="@style/AppTheme"
android:name=".Application">

<!-- Other settings -->
</application>
</manifest>

Add AWS SDK for Android library
1. Edit the app/build.gradle file. Add the following lines to the

dependencies section:

dependencies {
compile fileTree(dir: 'libs', include: ['*.jar'])
implementation 'com.android.support:appcompat-v7:26.1.0'
implementation 'com.android.support:support-v4:26.1.0'
implementation 'com.android.support:cardview-v7:26.1.0"
implementation 'com.android.support:recyclerview-v7:26.1.0'
implementation 'com.android.support.constraint:constraint-layout:1.0.2"'
implementation 'com.android.support:design:26.1.0'
implementation 'com.android.support:multidex:1.0.1"'
implementation 'joda-time:joda-time:2.9.9'

// AWS Mobile SDK for Android

implementation 'com.amazonaws:aws-android-sdk-core:2.6.+"'
implementation 'com.amazonaws:aws-android-sdk-auth-core:2.6.+@aar"
implementation 'com.amazonaws:aws-android-sdk-pinpoint:2.6.+"'

2. Choose Sync Now on the upper right to incorporate the dependencies you just declared.

Integrate the AWS Configuration File

First, create a raw resource folder to store the AWS configuration file:

1. Expand the app folder.
2. Right-click the res folder.
3. Choose New > Directory.

4. Type raw.

95

AWS Mobile Developer Guide
Android Notes App

® Android Studio File Edit View Navigate Code Analyze Refactor Build Run Tools VCS Window

] L] ~. MyApplication [~/Downloads/MyApplication] - .../app/src/main/java/com/dzmedia/android/m
0] TR o Cil & % app [L
.~ MyApplication © _app sre main res
g i Android - € = A 1+ o activity_main.xml € MainActivity.java
g app package com.dzmedia.android.myapplication;
= manifests 2
5 e IR Y : Kotin Fie/Class
res Sample Data Directory wit
g = Gradle Scripts Link C++ Project with Gradle . v
g ® File
a Cut 9¢ X =, Scratch File O8N lestate) {
e Copy 3C | Directory
. gopy Pa::h) h Ygic Image Asset
% N opy Relative Pat C Vector Asset
a ! Paste £l
‘f o Gradle Kotlin DSL Build Script
o Find in Path... O%F I .

5. Choose OK.

6. Copy the awsconfiguration. json file from its download location to the app/src/main/res/raw
directory.

Android gives a resource ID to any arbitrary file placed in the raw folder, making it easy to reference in
the app.

Tip Use Reveal in Finder

If you are having trouble locating the right
directory on disk, use Android Studio. Right-click
the raw folder, then select Reveal in Finder.

A new window with the location of the raw
directory pre-loaded will appear.

Create an AWSProvider.java Singleton Class
In our sample, all access to AWS is consolidated into a singleton class called AWSProvider. java.

1. Expand app/java in the Android Studio project explorer.
2. Right-click the com. amazonaws .mobile.samples.mynotes directory.
3. Select New > Java Class.
4. Enter the details:
« Name: AWSProvider
« Kind: Singleton
5. Choose OK.

You may be asked if you want to add the file to Git. Choose Yes.

The following is the initial code in this class:

package com.amazonaws.mobile.samples.mynotes;
import android.content.Context;

import com.amazonaws.auth.AWSCredentialsProvider;

96

AWS Mobile Developer Guide
Android Notes App

import com.amazonaws.mobile.auth.core.IdentityManager;

import com.amazonaws.mobile.config.AWSConfiguration;

import com.amazonaws.mobileconnectors.pinpoint.PinpointConfiguration;
import com.amazonaws.mobileconnectors.pinpoint.PinpointManager;

public class AWSProvider {
private static AWSProvider instance = null;
private Context context;
private AWSConfiguration awsConfiguration;
private PinpointManager pinpointManager;

public static AWSProvider getInstance() {
return instance;

}

public static void initialize(Context context) {
if (instance == null) {
instance = new AWSProvider(context);
}
}

private AWSProvider(Context context) {
this.context = context;
this.awsConfiguration = new AWSConfiguration(context);

IdentityManager identityManager = new IdentityManager(context, awsConfiguration);
IdentityManager.setDefaultIdentityManager(identityManager);
}

public Context getContext() {
return this.context;

}

public AWSConfiguration getConfiguration() {
return this.awsConfiguration;

}

public IdentityManager getIdentityManager() {
return IdentityManager.getDefaultIdentityManager();
}

public PinpointManager getPinpointManager() {
if (pinpointManager == null) {
final AWSCredentialsProvider cp =
getIdentityManager().getCredentialsProvider();
PinpointConfiguration config = new PinpointConfiguration(
getContext(), cp, getConfiguration());
pinpointManager = new PinpointManager(config);

}
return pinpointManager;
}
}
What does this do? The AWSProvider provides a central place to

add code that accesses AWS resources. The
constructor will load the AWS Configuration

(a JSON file that you downloaded earlier)

and create an IdentityManager object that

is used to authenticate the device and/or

user to AWS for accessing resources. The
getPinpointManager () method will create a
connection to Amazon Pinpoint if it doesn't exist.

97

AWS Mobile Developer Guide
Android Notes App

Update the Application Class

All Android applications that include the AWS SDK for Android must inherit from MultiDexApplication.
This has been done for you in this project. Open the Application. java file. In the onCreate()
method of the Application class, add code to initialize the AWSProvider object we previously added:

public class Application extends MultiDexApplication {
@Override
public void onCreate() {
super.onCreate();

// Initialize the AWS Provider
AWSProvider.initialize(getApplicationContext());

registerActivityLifecycleCallbacks(new ActivityLifeCycle());

Update the ActivityLifeCycle Class

We use an ActivityLifeCycle to monitor for activity events like start, stop, pause and resume. We
need to determine when the user starts the application so that we can send a startSession
event and stopSession event to Amazon Pinpoint. Adjust the onActivityStarted() and
onActivityStopped() methods as follows:

@Override
public void onActivityStarted(Activity activity) {
if (depth == 0) {
Log.d("ActivityLifeCycle", "Application entered foreground");
AWSProvider.getInstance().getPinpointManager().getSessionClient().startSession();
AWSProvider.getInstance().getPinpointManager().getAnalyticsClient().submitEvents();

}
depth++;
}
@Override
public void onActivityStopped(Activity activity) {
depth--;
if (depth == 0) {
Log.d("ActivityLifeCycle", "Application entered background");
AWSProvider.getInstance().getPinpointManager().getSessionClient().stopSession();
AWSProvider.getInstance().getPinpointManager().getAnalyticsClient().submitEvents();
}
}

Monitor Add and Delete Events in Amazon Pinpoint

We can also monitor feature usage within our app. In this example, we will monitor how often users add
and delete notes. We will record a custom event for each operation. The Delete Note operation occurs in
the NoteListActivity. java class. Review the onswiped method, and add the following code:

@Override

public void onSwiped(RecyclerView.ViewHolder viewHolder, int direction) {
final NoteViewHolder noteHolder = (NoteViewHolder) viewHolder;
((NotesAdapter) notesList.getAdapter()).remove(noteHolder);

// Send Custom Event to Amazon Pinpoint

final AnalyticsClient mgr = AWSProvider.getInstance()
.getPinpointManager()
.getAnalyticsClient();

98

https://developer.android.com/studio/build/multidex.html
https://developer.android.com/guide/components/activities/activity-lifecycle.html

AWS Mobile Developer Guide
Android Notes App

final AnalyticsEvent evt = mgr.createEvent("DeleteNote")
.withAttribute("noteId", noteHolder.getNote().getNoteId());

mgr.recordEvent(evt);

mgr.submitEvents();

The Add Note operation occurs in the NoteDetailFragment. java class. Review the saveData()
method, and add code to send the custom event to Amazon Pinpoint as shown in the following
fragment.

private void saveData() {

// Save the edited text back to the item.

boolean isUpdated = false;

if (!mItem.getTitle().equals(editTitle.getText().toString().trim())) {
mItem.setTitle(editTitle.getText().toString().trim());
mItem.setUpdated(DateTime.now(DateTimeZone.UTC));
isUpdated = true;

}

if (!mItem.getContent().equals(editContent.getText().toString().trim())) {
mItem.setContent(editContent.getText().toString().trim());
mItem.setUpdated(DateTime.now(DateTimeZone.UTC));
isUpdated = true;

}

// Convert to ContentValues and store in the database.
if (isUpdated) {
ContentValues values = mItem.toContentValues();
if (isUpdate) {
contentResolver.update(itemUri, values, null, null);
} else {
itemUri = contentResolver.insert(NotesContentContract.Notes.CONTENT URI,

values);
isUpdate = true; // Anything from now on is an update
// Send Custom Event to Amazon Pinpoint
final AnalyticsClient mgr = AWSProvider.getInstance()
.getPinpointManager ()
.getAnalyticsClient();
final AnalyticsEvent evt = mgr.createEvent("AddNote")
.withAttribute("noteId", mItem.getNoteId());
mgr.recordEvent(evt);
mgr.submitEvents();
}
}
}

The AnalyticsClient and AnalyticsEvent classes are not imported by default. Use Alt-Return to import the
missing classes.

Tip Auto Import

You can set up Auto-Import to automatically
import classes that you need. On Windows or
Linux, you can find Auto-Import under File >
Settings. On a Mac, you can find the same area
under Android Studio > Preferences. The auto-
import setting is under Editor > General > Auto
Import >Java. Change Insert imports on paste to
All and select the Add unambiguous imports on
the fly option.

99

AWS Mobile Developer Guide
Android Notes App

Run the Project and Validate Results

Run the application in the emulator using Run > Run 'app'. It should work as before. Ensure you try to

add and delete some notes to generate some traffic that can be shown in the Pinpoint console.

To view the demographics and custom events:

. Open the AWS Mobile Hub console.
. Choose your project.

. Choose Analytics on the left.

o A W N =

. You should see an up-tick in several graphs:

. Choose the Analytics icon on the left, to navigate to your project in the AWS Pinpoint console.

App analytics

Daily active users

Campaigns Demographics Events Funnels Usage Revenue
Last 30 days
Active targetable users Campaigns
0 0 0 0 0% 0

Monthly active users

9.03 0.03 .. n
New users Sessions
0_.03 o day O‘.OSA

Change o

6. Choose Demographics to view the demographics information.

7. Choose Events.

8. Use the Event drop down to show only the AddNote event.

Revenue

Overview Campaigns Events Funnels Usage Revenue
Lost 30 days All channels
Standard attributes
Platforms App versions Models Makes. Countries
android 10 Android SDK built for x86 unknown us

®

100

https://console.aws.amazon.com/mobilehub/
https://console.aws.amazon.com/pinpoint/

AWS Mobile Developer Guide
Android Notes App

Overview Campaigns Demographics Funnels Usage Revenue
Event Attributes
AddNote v |4

Event count Events per session

2 1

Event count User count

D 8686660608808 06 660083080886 806080GCLELSLIDS 0 8886806088080 8080080008088 060800E
131 Aug 7 Aug 14 Aug 21 Jul3 Aug7 Aug 14 Aug21

If you see data within each page, you have successfully added analytics to your app. Should you release
your app on the App Store, you can come back here to see more details about your users.

Next steps

« Continue by adding Authentication (p. 101).
« Learn more about Amazon Pinpoint.

Add Authentication to the Notes App

In the previous section (p. 94) of this tutorial, we created a mobile backend project in AWS Mobile
Hub, then added analytics to the sample note-taking app. This section assumes you have completed
those steps. If you jumped to this step, please go back and start from the beginning (p. 90). In this
tutorial, we will configure a sign-up / sign-in flow in our mobile backend. We will then add a new
authentication activity to our note-taking app.

You should be able to complete this section of the tutorial in 20-30 minutes.
Set Up Your Backend

Before we work on the client-side code, we need to add User Sign-in to the backend project:

. Open the AWS Mobile Hub console.

. Select your project.

. Scroll down to the Add More Backend Features section.
. Choose the User Sign-in tile.

. Choose Email and Password.

O U1 A W N =

. Scroll to the bottom and then Choose Create user pool.

What does this do? You have just created your own user pool in
the Amazon Cognito service. When used in
conjunction with the AWS Mobile sign-in process,

101

https://aws.amazon.com/pinpoint/
https://console.aws.amazon.com/mobilehub/home/
http://docs.aws.amazon.com/cognito/latest/developerguide/cognito-user-identity-pools.html

AWS Mobile Developer Guide
Android Notes App

the user pool enforces the password requirement
rules you chose. It also supports sign-up and
forgot my password user flows.

7. Choose your project name in the upper left and then choose Integrate on your Android app card.

8. Choose Download Cloud Config to get an awsconfiguration. json file updated with the new
services.

9. Choose Next and then choose Done.

Remember Whenever you update the AWS Mobile Hub
project, a new AWS configuration file for your app
is generated.

Connect to Your Backend

Replace the awsconfiguration. json file in app/src/main/res/raw directory with the updated
version.

Note Your system may have modified the
filename to avoid conflicts. Make sure the
file you add to your Xcode project is named
awsconfiguration. json.

Add the Authentication Ul Library

1. Open the app/build.gradle file and add the following lines to the dependencies section:

dependencies {
compile fileTree(dir: 'libs', include: ['*.jar'])
implementation 'com.android.support:appcompat-v7:26.1.0'
implementation 'com.android.support:support-v4:26.1.0'
implementation 'com.android.support:cardview-v7:26.1.0"'
implementation 'com.android.support:recyclerview-v7:26.1.0'
implementation 'com.android.support.constraint:constraint-layout:1.0.2"
implementation 'com.android.support:design:26.1.0'
implementation 'com.android.support:multidex:1.0.1"'
implementation 'joda-time:joda-time:2.9.9'

//AWS Mobile SDK for Android

implementation 'com.amazonaws:aws-android-sdk-core:2.6.+"'

implementation 'com.amazonaws:aws-android-sdk-auth-core:2.6.+@aar’'
implementation 'com.amazonaws:aws-android-sdk-auth-ui:2.6.+@aar’'
implementation 'com.amazonaws:aws-android-sdk-auth-userpools:2.6.+@aar'’
implementation 'com.amazonaws:aws-android-sdk-cognitoidentityprovider:2.6.+"
implementation 'com.amazonaws:aws-android-sdk-pinpoint:2.6.+"

}

2. Choose Sync Now on the upper right to incorporate the dependencies you just declared.

Register the Email and Password Sign-in Provider

The sign-in Ul is provided by IdentityManager. Each method of establishing identity (email and
password, Facebook and Google) requires a plug-in provider that handles the appropriate sign-in flow.

102

AWS Mobile Developer Guide
Android Notes App

1. Open your project in Android Studio.
2. Open the AWSProvider. java class.

3. Add the following to the import declarations:

import com.amazonaws.auth.AWSCredentialsProvider;

import com.amazonaws.mobile.auth.core.IdentityManager;

import com.amazonaws.mobile.auth.userpools.CognitoUserPoolsSignInProvider;
import com.amazonaws.mobile.config.AWSConfiguration;

import com.amazonaws.mobileconnectors.pinpoint.PinpointConfiguration;
import com.amazonaws.mobileconnectors.pinpoint.PinpointManager;

4. Adjust the constructor to add the CognitoUserPoolsSignInProvider.

private AWSProvider(Context context) {
this.context = context;
this.awsConfiguration = new AWSConfiguration(context);

IdentityManager identityManager = new IdentityManager(context, awsConfiguration);
IdentityManager.setDefaultIdentityManager(identityManager);
identityManager.addSignInProvider(CognitoUserPoolsSignInProvider.class);

Add a AuthenticatorActivity to the project

You can call the IdentityProvider at any point in your application. In this tutorial, we will add a new
screen to the project that is displayed before the list. The user will be prompted to sign-up or sign-in
prior to seeing the list of notes. This ensures that all connections to the backend will be authenticated.

To add a AuthenticatorActivity to the project, in Android Studio

1. Right-click the com.amazonaws .mobile.samples.mynotes folder.
2. Choose New > Activity > Empty Activity.

3. Type AuthenticatorActivity as the Activity Name.

4. Choose Finish.

Edit the onCreate() method of AuthenticatorActivity. java as follows:

@Override

protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.activity_authenticator);

final IdentityManager identityManager = AWSProvider.getInstance().getIdentityManager();
// Set up the callbacks to handle the authentication response
identityManager.login(this, new DefaultSignInResultHandler() {
@Override
public void onSuccess(Activity activity, IdentityProvider identityProvider) {
Toast.makeText(AuthenticatorActivity.this,
String.format("Logged in as %s", identityManager.getCachedUserID()),
Toast.LENGTH_LONG) .show();
// Go to the main activity
final Intent intent = new Intent(activity, NoteListActivity.class)
.setFlags(Intent.FLAG_ACTIVITY_CLEAR_TOP);
activity.startActivity(intent);
activity.finish();

103

AWS Mobile Developer Guide
Android Notes App

@Override
public boolean onCancel(Activity activity) {
return false;
}
)i

// Start the authentication UI
AuthUIConfiguration config = new AuthUIConfiguration.Builder()
.userPools(true)
.build();
SignInActivity.startSignInActivity(this, config);
AuthenticatorActivity.this.finish();

What does this do? The AWS SDK for Android contains an in-built
activity for handling the authentication Ul. This
Activity sets up the authentication Ul to work for
just email and password, then sets up an activity
listener to handle the response. In this case, we
transition to the NoteListActivity when a
successful sign-in occurs, and stay on this activity
when it fails. Finally, we transition to the Sign-In
activity from the AWS SDK for Android library.

Update the AndroidManifest.xml

The AuthenticatorActivity will be added to the AndroidManifest.xml automatically, but it
will not be set as the default (starting) activity. To make the AuthenticatorActivity primary, edit the
AndroidManifest.xml:

<activity
android:name=".AuthenticatorActivity"
android:label="Sign In"
android:theme="@style/AppTheme.NoActionBar">
<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>
</activity>
<activity
android:name=".NoteListActivity"
android:label="@string/app_name"
android:theme="@style/AppTheme.NoActionBar">
<!-- Remove the intent-filter from here -->
</activity>

The .AuthenticatorActivity section is added at the end. Ensure it is not duplicated. You will see
build errors if the section is duplicated.

Run the project and validate results

Run in the emulator using Run > Run 'app’. You should see a sign-in screen. Choose the Create

new account button to create a new account. Once the information is submitted, you will be sent a
confirmation code via email. Enter the confirmation code to complete registration, then sign-in with your
new account.

Tip Use Amazon WorkMail as a test email account

104

AWS Mobile Developer Guide
Android Notes App

Next steps

« Continue by integrating NoSQL Data (p. 105).
« Learn more about Amazon Cognito.

If you do not want to use your own email account
as a test account, create an Amazon WorkMail
service within AWS for test accounts. You can get
started for free with a 30-day trial for up to 25
accounts.

Add Online Data Access to the Notes App

In the previous section (p. 101) of this tutorial , we added a simple sign-up / sign-in flow to the sample
note-taking app with email validation. This tutorial assumes you have completed the previous tutorials.

105

https://aws.amazon.com/workmail/
https://aws.amazon.com/cognito/

AWS Mobile Developer Guide
Android Notes App

If you jumped to this step, please go back and start from the beginning (p. 90). In this tutorial, we will
add a NoSQL database to our mobile backend, then configure a basic data access service to the note-
taking app.

The Notes sample app uses a ContentProvider (called NotesContentProvider) to provide access to a
local SQLite database that is used to store the notes that you enter into the app. We will replace the code
within the ContentProvider with code that uses DynamoDB instead of SQLite.

You should be able to complete this section of the tutorial in 30-45 minutes.

Add a NoSQL database to the AWS Mobile Hub project

Before we work on the client-side code, we need to add a NoSQL database and table to the backend
project:

1. Open the AWS Mobile Hub console.

2. Select your project.

3. Scroll down to the Add More Backend Features section and then choose the NoSQL Database tile.
4

. Choose Enable NoSQL, choose Add Table, and then choose Example to start with an example
schema.

5. Choose Notes, which most closely matches the model we wish to use.
6. Choose Add attribute, then fill in the details of the new attribute:
o Attribute name: updatedDate
« Type: number
7. Choose Add index then fill in the details of the new index:
o Index name: LastUpdated
« Partition key: userId
« Sort key: updatedDate
8. Choose Create table

9. Choose Create table in the modal dialog. It will take a few moments for AWS to create the table.

You have just created a NoSQL table in the Amazon DynamoDB service.

10When the table is ready, choose your project name in the upper left and then choose Integrate on
your Android app card.

11Choose Download Cloud Config to get an awsconfiguration. json file updated with the new
services.

12Choose Next and then choose Done.

Remember Whenever you update the AWS Mobile Hub
project, a new AWS configuration file for your app
is generated.

Connect to Your Backend

Replace the awsconfiguration. json file in app/src/main/res/raw directory with the updated
version.

Your system may have modified the filename to avoid conflicts. Make sure the file you add to your
Android Studio project is named awsconfiguration. json.

106

https://developer.android.com/guide/topics/providers/content-providers.html
https://console.aws.amazon.com/mobilehub/home/
https://aws.amazon.com/dynamodb/

AWS Mobile Developer Guide
Android Notes App

Download the Models

To aid in implementing a provider for the table you created, Mobile Hub generated a data model
descriptor file. To add the data model to your project:

1. Choose your project name in the upper left and then choose Integrate on the Android app card.
2. Choose Android Models under Download Models.

3. Unpack the downloaded ZIP file and copy the files under src/main/java/com/amazonaws/
models/nosql to your Android Studio project in app/src/main/java/com/amazonaws /mobile/
samples/mynotes/data. One file (NotesDO. java) should be copied.

4. Edit the data/NotesDO. java file and change the package setting:

package com.amazonaws.mobile.samples.mynotes.data;

Add required libraries to the project

Edit the app/build.gradle file and add the DynamoDB libraries to the dependencies:

dependencies {

/7

implementation 'com.amazonaws:aws-android-sdk-core:2.6.+"'

implementation 'com.amazonaws:aws-android-sdk-auth-core:2.6.+@aar"
implementation 'com.amazonaws:aws-android-sdk-auth-ui:2.6.+@aar’
implementation 'com.amazonaws:aws-android-sdk-auth-userpools:2.6.+@aar'
implementation 'com.amazonaws:aws-android-sdk-cognitoidentityprovider:2.6.+"'
implementation 'com.amazonaws:aws-android-sdk-pinpoint:2.6.+"'

// Amazon DynamoDB for NoSQL tables
implementation 'com.amazonaws:aws-android-sdk-ddb:2.6.+"'
implementation 'com.amazonaws:aws-android-sdk-ddb-mapper:2.6.+"

1. Choose Sync Now on the upper right to incorporate the dependencies you just declared.

Add Data access methods to the AWSProvider class

To implement data synchronization, we need two explicit methods: a method to upload changes and a
method to download updates from the server.

To add data access methods

1. Import DynamoDBMapper and AmazonDynamoDBClient in AWSProvider. java.

import com.amazonaws.auth.AWSCredentialsProvider;

import com.amazonaws.mobile.auth.core.IdentityManager;

import com.amazonaws.mobile.auth.userpools.CognitoUserPoolsSignInProvider;
import com.amazonaws.mobile.config.AWSConfiguration;

import com.amazonaws.mobile.samples.mynotes.data.NotesDO;

import com.amazonaws.mobileconnectors.pinpoint.PinpointConfiguration;
import com.amazonaws.mobileconnectors.pinpoint.PinpointManager;

// Add DynamoDBMapper and AmazonDynamoDBClient to support data access methods
import com.amazonaws.mobileconnectors.dynamodbv2.dynamodbmapper.DynamoDBMapper;
import com.amazonaws.services.dynamodbv2.AmazonDynamoDBClient;

107

AWS Mobile Developer Guide
Android Notes App

2. Add private DynamoDBMapper and AmazonDynamoDBClient variables to the AWSProvider class:

public class AWSProvider {
private static AWSProvider instance = null;
private Context context;
private AWSConfiguration awsConfiguration;
private PinpointManager pinpointManager = null;

// Declare DynamoDBMapper and AmazonDynamoDBClient private variables
// to support data access methods

private AmazonDynamoDBClient dbClient = null;

private DynamoDBMapper dbMapper = null;

public static AWSProvider getInstance() {
return instance;
}
}

3. Add the following method to the class:

public DynamoDBMapper getDynamoDBMapper() {
if (dbMapper == null) {

final AWSCredentialsProvider cp = getIdentityManager().getCredentialsProvider();

dbClient = new AmazonDynamoDBClient(cp);

dbMapper = DynamoDBMapper.builder()
.awsConfiguration(getConfiguration())
.dynamoDBClient(dbClient)
Jouild();

}
return dbMapper;

Implement Mutation Methods

The ContentProvider is the basic interface that Android uses to communicate with databases on Android.
It uses four methods that match the basic CRUD (create, read, update, delete) methods.

Add the following methods to the NotesContentProvider class:

private NotesDO toNotesDO(ContentValues values) {
final NotesDO note = new NotesDO();
note.setContent(values.getAsString(NotesContentContract.Notes.CONTENT));
note.setCreationDate(values.getAsDouble(NotesContentContract.Notes.CREATED));
note.setNoteId(values.getAsString(NotesContentContract.Notes.NOTEID));
note.setTitle(values.getAsString(NotesContentContract.Notes.TITLE));
note.setUpdatedDate(values.getAsDouble(NotesContentContract.Notes.UPDATED));
note.setUserId(AWSProvider.getInstance().getIdentityManager().getCachedUserID());
return note;

}

private Object[] fromNotesDO(NotesDO note) {
String[] fields = NotesContentContract.Notes.PROJECTION_ALL;
Object[] r = new Object[fields.length];
for (int i = 0 ; i < fields.length ; i++) {
if (fields[i].equals(NotesContentContract.Notes.CONTENT)) {
r[i] = note.getContent();
} else if (fields[i].equals(NotesContentContract.Notes.CREATED)) {
r[i] = note.getCreationDate();
} else if (fields[i].equals(NotesContentContract.Notes.NOTEID)) {
r[i] = note.getNoteId();
} else if (fields[i].equals(NotesContentContract.Notes.TITLE)) {
r[i] = note.getTitle();

108

https://developer.android.com/guide/topics/providers/content-providers.html

AWS Mobile Developer Guide
Android Notes App

} else if (fields[i].equals(NotesContentContract.Notes.UPDATED)) {
r[i] = note.getUpdatedDate();
} else {
r[i] = new Integer(0);
}
}

return r;

These functions convert object attributes when they are passed between Contentvalues of the app
and the NotesDO object, which required by the Amazon DynamoDB service.

Mutation events handle the insert, update, and delete methods:

@Nullable

@Override
public Uri insert(@NonNull Uri uri, @Nullable ContentValues values) {

int uriType = sUriMatcher.match(uri);
switch (uriType) {
case ALL_ITEMS:
DynamoDBMapper dbMapper = AWSProvider.getInstance().getDynamoDBMapper();

final NotesDO newNote = toNotesDO(values);

dbMapper.save(newNote);

Uri item = NotesContentContract.Notes.uriBuilder(newNote.getNoteId());
notifyAllListeners(item);

return item;

default:
throw new IllegalArgumentException("Unsupported URI: " + uri);

¥

@Override
public int delete(@NonNull Uri uri, @Nullable String selection, @Nullable String[]

selectionArgs) {
int uriType = sUriMatcher.match(uri);
int rows;

switch (uriType) {
case ONE_ITEM:
DynamoDBMapper dbMapper = AWSProvider.getInstance().getDynamoDBMapper();
final NotesDO note = new NotesDO();
note.setNoteId(uri.getLastPathSegment());

note.setUserId(AWSProvider.getInstance().getIdentityManager().getCachedUserID());
dbMapper.delete(note);
rows = 1;
break;
default:
throw new IllegalArgumentException("Unsupported URI: " + uri);
}
if (rows > 0) {
notifyAllListeners(uri);

}

return rows;
}
@Override

public int update(@NonNull Uri uri, @Nullable ContentValues values, @Nullable String

selection, @Nullable String[] selectionArgs) {
int uriType = sUriMatcher.match(uri);
int rows;

switch (uriType) {
case ONE_ITEM:

109

AWS Mobile Developer Guide
Android Notes App

DynamoDBMapper dbMapper = AWSProvider.getInstance().getDynamoDBMapper();
final NotesDO updatedNote = toNotesDO(values);
dbMapper.save(updatedNote);
rows = 1;
break;
default:
throw new IllegalArgumentException("Unsupported URI: " + uri);
}
if (rows > 0) {
notifyAllListeners(uri);

}

return rows;

Implement Query Methods

This application always asks for the entire data set that the user is entitled to see, so there is no need
to implement complex query management. This simplifies the query () method considerably. The
query () method returns a Cursor (which is a standard mechanism for iterating over data sets returned

from databases).

@Nullable

@Override

public Cursor query(
@NonNull Uri uri,
@Nullable String[] projection,
@Nullable String selection,
@Nullable String[] selectionArgs,
@Nullable String sortOrder) {

int uriType = sUriMatcher.match(uri);

DynamoDBMapper dbMapper = AWSProvider.getInstance().getDynamoDBMapper();
MatrixCursor cursor = new MatrixCursor(NotesContentContract.Notes.PROJECTION_ALL);
String userId = AWSProvider.getInstance().getIdentityManager().getCachedUserID();

switch (uriType) {
case ALL_ITEMS:
// In this (simplified) version of a content provider, we only allow searching
// for all records that the user owns. The first step to this is establishing
// a template record that has the partition key pre-populated.
NotesDO template = new NotesDO();
template.setUserId(userId);
// Now create a query expression that is based on the template record.
DynamoDBQueryExpression<NotesDO> queryExpression;
queryExpression = new DynamoDBQueryExpression<NotesDO>()
.withHashKeyValues(template);
// Finally, do the query with that query expression.
List<NotesDO> result = dbMapper.query(NotesDO.class, queryExpression);
Iterator<NotesDO> iterator = result.iterator();
while (iterator.hasNext()) {
final NotesDO note = iterator.next();
Object[] columnValues = fromNotesDO(note);
cursor.addRow(columnValues);

}

break;
case ONE_ITEM:
// In this (simplified) version of a content provider, we only allow searching
// for the specific record that was requested
final NotesDO note = dbMapper.load(NotesDO.class, userId,
uri.getLastPathSegment());
if (note != null) {
Object[] columnValues = fromNotesDO(note);
cursor.addRow(columnValues);

110

AWS Mobile Developer Guide
Android Notes App

}

break;

}

cursor.setNotificationUri(getContext().getContentResolver(), uri);
return cursor;

Note Differences from a real implementation

We've taken a simplified approach for this
content provider to demonstrate the CRUD
implementation. A real implementation would
need to deal with online state and handle caching
of the data, plus handle appropriate query
capabilities as required by the application.

Convert the CRUD methods to Async

The in-built SQLite driver has asynchronous wrappers so that you don't need to think about what the
content provider is actually doing. However, network connections cannot happen on the Ul thread. In
the absence of an asynchronous wrapper, you must provide your own. This affects the create, update,
and delete operations. There is no need to add code to load the data from the server, as that operation is
already asynchronous.

Inserts and updates are done in the NoteDetailFragment. java class. Deletes are done in the
NoteListActivity. java class.

In the onCreate() method of the NoteDetailFragment. java class, replace the following if
statement that calls local cursor functions:

if (arguments != null && arguments.containsKey(ARG_ITEM ID)) {
String itemId = getArguments().getString(ARG_ITEM_ID);
itemUri = NotesContentContract.Notes.uriBuilder(itemId);
Cursor data = contentResolver.query(itemUri, NotesContentContract.Notes.PROJECTION_ ALL,
null, null, null);
if (data != null) {
data.moveToFirst();
mItem = Note.fromCursor(data);
isUpdate = true;
}
} else {
mItem = new Note();
isUpdate = false;

With the following constants and statement that establishes an AsyncQueryHandler, which provides a
wrapper to make the calls run on a non-Ul thread asynchronously:

// Constants used for async data operations
private static final int QUERY_TOKEN = 1001;
private static final int UPDATE_TOKEN = 1002;
private static final int INSERT_TOKEN = 1003;

@Override
public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);

AWS Mobile Developer Guide
Android Notes App

// Get the ContentResolver
contentResolver = getContext().getContentResolver();

// Unbundle the arguments if any. If there is an argument, load the data from
// the content resolver aka the content provider.
Bundle arguments = getArguments();
mItem = new Note();
if (arguments != null && arguments.containsKey(ARG_ITEM ID)) {
String itemId = getArguments().getString(ARG_ITEM_ID);
itemUri = NotesContentContract.Notes.uriBuilder(itemId);

// Replace local cursor methods with async query handling
AsyncQueryHandler queryHandler = new AsyncQueryHandler(contentResolver) {
@Override
protected void onQueryComplete(int token, Object cookie, Cursor cursor) {
super.onQueryComplete(token, cookie, cursor);
cursor.moveToFirst();
mItem = Note.fromCursor(cursor);
isUpdate = true;

editTitle.setText(mItem.getTitle());
editContent.setText(mItem.getContent());
}
Y
queryHandler.startQuery(QUERY_TOKEN, null, itemUri,
NotesContentContract.Notes.PROJECTION_ALL, null, null, null);

} else {
isUpdate = false;
}

// Start the timer for the delayed start
timer.postDelayed(timerTask, 5000);

In the saveData() method, replace the following local cursor methods:

// Convert to ContentValues and store in the database.
if (isUpdated) {
ContentValues values = mItem.toContentValues();
if (isUpdate) {
contentResolver.update(itemUri, values, null, null);

} else {
itemUri = contentResolver.insert(NotesContentContract.Notes.CONTENT_URI, values);
isUpdate = true; // Anything from now on is an update

itemUri = NotesContentContract.Notes.uriBuilder(mItem.getNoteId());

with an AsyncQueryHandler:

private void saveData() {

// Save the edited text back to the item.

boolean isUpdated = false;

if (!mItem.getTitle().equals(editTitle.getText().toString().trim())) {
mItem.setTitle(editTitle.getText().toString().trim());
mItem.setUpdated(DateTime.now(DateTimeZone.UTC));
isUpdated = true;

}

if (!mItem.getContent().equals(editContent.getText().toString().trim())) {

112

AWS Mobile Developer Guide
Android Notes App

mItem.setContent(editContent.getText().toString().trim());
mItem.setUpdated(DateTime.now(DateTimeZone.UTC));
isUpdated = true;

}

// Replace local cursor methods with an async query handler
// Convert to ContentValues and store in the database.
if (isUpdated) {
ContentValues values = mItem.toContentValues();
AsyncQueryHandler queryHandler = new AsyncQueryHandler(contentResolver) {

@Override
protected void onInsertComplete(int token, Object cookie, Uri uri) {

super.onInsertComplete(token, cookie, uri);
Log.d("NoteDetailFragment", "insert completed");

}

@Override

protected void onUpdateComplete(int token, Object cookie,
super.onUpdateComplete(token, cookie, result);
Log.d("NoteDetailFragment", "update completed");

int result) {

}
}i
if (isUpdate) {

queryHandler.startUpdate(UPDATE_TOKEN, null, itemUri, values, null, null);
} else {

queryHandler.startInsert(INSERT TOKEN, null,

NotesContentContract.Notes.CONTENT_URI, values);
isUpdate = true; // Anything from now on is an update

// Send Custom Event to Amazon Pinpoint

final AnalyticsClient mgr = AWSProvider.getInstance()
.getPinpointManager()
.getAnalyticsClient();

final AnalyticsEvent evt = mgr.createEvent("AddNote")
.withAttribute("noteId", mItem.getNoteId());

mgr.recordEvent(evt);

mgr.submitEvents();

Replace the remove () method in NoteListActivity. java with the following.

private static final int DELETE_TOKEN = 1004;

void remove(final NoteViewHolder holder) {

if (mTwoPane){
// Check to see if the current fragment is the record we are deleting

Fragment currentFragment =
NoteListActivity.this.getSupportFragmentManager().findFragmentById(R.id.note_detail_contain

if (currentFragment instanceof NoteDetailFragment) {
String deletedNote = holder.getNote().getNoteId();
String displayedNote = ((NoteDetailFragment)

currentFragment).getNote().getNoteId();
if (deletedNote.equals(displayedNote)) {

er);

getSupportFragmentManager().beginTransaction().remove(currentFragment).commit();

}
}
¥

// Remove the item from the database

113

AWS Mobile Developer Guide
iOS Notes App

final int position = holder.getAdapterPosition();
Uri itemUri = NotesContentContract.Notes.uriBuilder(holder.getNote().getNoteId());
AsyncQueryHandler queryHandler = new AsyncQueryHandler(getContentResolver()) {
@Override
protected void onDeleteComplete(int token, Object cookie, int result) {
super.onDeleteComplete(token, cookie, result);
notifyItemRemoved(position);
Log.d("NoteListActivity", "delete completed");

}i

queryHandler.startDelete(DELETE_TOKEN, null, itemUri, null, null);

If you need to do a query (for example, to respond to a search request), then you can use a similar
technique to wrap the query () method.

Run the application

You must be online in order to run this application. Run the application in the emulator. Note that the
initial startup after logging in is slightly longer (due to reading the data from the remote database).

Data is available immediately in the mobile backend. Create a few notes, then view the records within
the AWS Console:

1. Open the Mobile Hub console.

2. Choose your project.

3. Choose Resources in the left hand menu.

4. Choose the link for your DynamoDB table.

5. Choose the Items tab.

When you insert, edit or delete notes in the app, you should be able to see the data on the server reflect
your actions almost immediately.

Next Steps

« Learn about data synchronization by reading about the Android Sync Framework.

« Learn about Amazon DynamoDB.

A Simple Note-taking App

Start with a working app and then add cloud enable features. In this tutorial, you will take a working app,
driven from locally stored data, and then:

« Add analytics to your app (p. 116) so you can view demographic information about your users.

« Add a simple sign-in/sign-up flow (p. 121) for authentication.

» Access data stores in the AWS (p. 126) cloud, so that a user's notes are available to them on any
device with the app installed.

114

https://console.aws.amazon.com/mobilehub/home/
https://developer.android.com/training/sync-adapters/index.html
https://aws.amazon.com/dynamodb/

AWS Mobile Developer Guide
iOS Notes App

You should be able to complete the setup section of this tutorial within 10-15 minutes after you have
installed all required software. Once you complete the instructions on this page, you can run the project
on your local system.

Getting Started

Before beginning, on your Mac:

« Install XCode using the Mac App Store (version 8.0 or higher is required).
« Configure the XCode command line tools. Run xcode-select --install from a Terminal window.

« Install Cocoapods. From a terminal window run:

sudo gem install cocoapods

115

https://itunes.apple.com/us/app/xcode/id497799835?mt=12

AWS Mobile Developer Guide
iOS Notes App

Download the Source code

1. Get the tutorial source code using one of the following choices:

« Download the source code as a ZIP file.

« Browse to https://github.com/aws-samples/aws-mobile-ios-notes-tutorial/ and clone or fork the
repository (sign up for GitHub account, if you do not have one).

Compile and Run the Project

To compile the source code and the project in a simulator:

1. Unzip aws-mobile-ios-notes-tutorial-latest.zip and launch Xcode by choosing
MyNotes.xcodeproj in the expanded folder.

2. Select Product > Build (
<problematic>|Acommand|</problematic>
-B) to build the project.

3. Select any compatible simulator from the list in the toolbar at the top, next to the label with your app
name.

4. Choose the runicon (
<problematic>|play|</problematic>
) on the top left or type
<problematic>|Acommand|</problematic>
-R to build and run the app.

You should be able to interact with the application. Try clicking on the + at the top right to create a note,
or click on a note to show the editor screen.

Next Steps

Next, integrate application analytics (p. 116) into your project.

Add Analytics to the Notes App

In the previous section (p. 114) of this tutorial, we installed Xcode, downloaded a sample note-

taking app from GitHub, then compiled and ran it in the iOS Simulator. This tutorial assumes you have
completed the those steps. In this section, we will extend the notes app to include application analytics.
Application analytics allow us to gather demographic information about the application usage.

You should be able to complete this section in 10-15 minutes.
Set Up Your Back End

To start, set up the mobile backend resources in AWS:

1. Open the AWS Mobile Hub console.
« If you do not have an AWS account, sign up for the AWS Free Tier.

2. Choose Create on the upper left, and the type ios-notes-app for the name of the Mobile Hub
project.

3. Choose Next, choose iOS, and then choose Add.

4. Choose Download Cloud Config, and save awsconfiguration. json. This file the configuration to
connect your app to your backend.

5. Choose Next and then choose Done to create the project.

116

https://github.com/aws-samples/aws-mobile-ios-notes-tutorial/archive/master.zip
https://github.com/aws-samples/aws-mobile-ios-notes-tutorial/
https://github.com/join?source=header-home
https://console.aws.amazon.com/mobilehub/home/
https://aws.amazon.com/free/

AWS Mobile Developer Guide
iOS Notes App

Used in this section AWS Mobile Hub: Configure your mobile app's
AWS backend in minutes, and then to manage
those resources as your app evolves.

Connect to Your Backend
1. Drag awsconfiguration. json from the download location into the folder in the XCode Project

Navigator that contains Info.plist. Select Copy items if needed and Create groups in the options
dialog.

2. Choose Finish.

You have now created the AWS resources you need and connected them to your app.

Add Analytics the Dependencies

1. To create a Podfile for your project, run:

cd YOUR-APP-ROOT-FOLDER
pod init

2. Open Podfile and replace the placeholder code with the following. If the file is not visible your
Xcode Project Navigator, right-click the project root and choose Show in finder.

platform :ios, '9.0'
target :'MyNotes' do
use_frameworks!

Analytics dependency
pod 'AWSPinpoint', '~> 2.6.5'

other pods

end

3. Close your Xcode project and then run:

pod install --repo-update

If you encounter an error message that begins "[!] Failed to connect to GitHub to update
the CocoaPods/Specs . . ." andyour internet connectivity is working, you may need to update
openssl and Ruby.

Important From this point forward, open your project
using the . xcworkspace file generated by
cocoapods for all further development.

4. Rebuild your app after reopening it in the workspace to resolve APIs from new libraries called in your
code. This is a good practice any time you add import statements.

Initialize Amazon Pinpoint to Enable Analytics

You have just installed the AWS Mobile dependencies for your app.

117

https://console.aws.amazon.com/mobilehub/home/
https://stackoverflow.com/questions/38993527/cocoapods-failed-to-connect-to-github-to-update-the-cocoapods-specs-specs-repo/48962041#48962041
https://stackoverflow.com/questions/38993527/cocoapods-failed-to-connect-to-github-to-update-the-cocoapods-specs-specs-repo/48962041#48962041

AWS Mobile Developer Guide
iOS Notes App

To turn your analytics on, open your project using MyNotes .xcworkspace insert the following code
into the didFinishLaunchwithOptions method of your app's AppDelegate.swift.

//-
// Analytics imports
import AWSCore
import AWSPinpoint

//.

class AppDelegate: UIResponder, UIApplicationDelegate {
/7.

// Add the pinpoint variable
var pinpoint: AWSPinpoint?

//.
func application(_ application: UIApplication, didFinishLaunchingWithOptions
launchOptions:
[UIApplicationLaunchOptionsKey: Any]?) -> Bool {
//.
// Initialize Pinpoint to enable session analytics
pinpoint = AWSPinpoint(configuration:
AWSPinpointConfiguration.defaultPinpointConfiguration(launchOptions:

launchOptions))

return true

//.

Now your app is setup to provide session analytics you can view in the Amazon Pinpoint console.
Run the App and Validate Results

Re-build the application and run the application in the Simulator. It should work as before. Add and
delete some notes to generate analytics traffic that can be shown in the Pinpoint console.

To view the demographics and custom events:

1. Choose Analytics on the top right to open your project in the Amazon Pinpoint console.

2. Choose the Analytics icon on the left. You should see an up-tick in several graphs (it may take a few
minutes for the data to show):

118

AWS Mobile Developer Guide
iOS Notes App

Campaigns Demographics Events Funnels Usage Revenue @
Active targetable users Campaigns

0 0 0 0 0% 0 0 0

App analytics

Daily active users Monthly active users Revenue

0.03 :coce 0.03 oA

Change e

New users Sessions

- Change over peried

Overview Campaigns Events Funnels Usage Revenue @
Lo 30 —
Standard attributes
Platforms App versions Models Makes. Countries
android 1.0 Android SDK built for x86 unknown us

If you see data within each page, you have successfully added analytics to your app. Should you release
your app, you can come back here to see more details about your users.

Add Custom Analytics

Amazon Pinpoint also allows you to capture custom analytics data for events that show usage of your
app's features. For this tutorial we'll send analytics each time a note is added or deleted.

To add analytics events, open . /Data/NotesContentProvider.swift where both add and delete
operations happen.

Start by adding the following imports.

import AWSCore
import AWSPinpoint

Add the following function and enum to the NotesContentProvider class to send AddNote and
DeleteNote event analytics.

119

AWS Mobile Developer Guide
iOS Notes App

public class NotesContentProvider {

//

// Send analytics AddNote and DeleteNote events
func sendNoteEvent(noteId: String, eventType: String)
{

let pinpointClient = AWSPinpoint(configuration:
AWSPinpointConfiguration.defaultPinpointConfiguration(launchOptions: nil))

let pinpointAnalyticsClient = pinpointClient.analyticsClient

let event = pinpointAnalyticsClient.createEvent(withEventType: eventType)
event.addAttribute("NoteId", forKey: noteId)
pinpointAnalyticsClient.record(event)
pinpointAnalyticsClient.submitEvents()

enum noteEventType: String {
case AddNote = "AddNote"
case DeleteNote = "DeleteNote"

To capture note additions, place the following sendNoteEvent function call within the insert function
of that class.

/ *

Insert a new record into the database using NSManagedObjectContext

@param noteTitle the note title to be inserted
@param noteContent the note content to be inserted
* @return noteId the unique Note Id

*/

func insert(noteTitle: String, noteContent: String) -> String {

* Ok X X X

!/
print("New Note Saved : \(newNoteId)")

//Send AddNote analytics event
sendNoteEvent(noteId: newNoteld, eventType: noteEventType.AddNote.rawValue)

return newNoteId

To capture note deletions, place the following sendNoteEvent function call within the delete function
of that class.

/**
* Delete note using NSManagedObjectContext and NSManagedObject
* @param managedObjectContext the managed context for the note to be deleted
* @param managedObj the core data managed object for note to be deleted
* @param noteId the noteId to be delete
*/
public func delete(managedObjectContext: NSManagedObjectContext, managedObj:
NSManagedObject, noteId: String!) {
let context = managedObjectContext
context.delete(managedObj)

120

AWS Mobile Developer Guide
iOS Notes App

do {
// .

// Send DeletNote analytics event
sendNoteEvent(noteId: noteld, eventType: noteEventType.DeleteNote.rawValue)

/.
} catch {

/1l -

View Your Custom Analytics

To view the AddNote and DeleteNote custom analytics events, rebuild and run your app in the
Simulator, add and delete notes, then return to the Amazon Pinpoint console for your project.

1. Choose Events.
2. Use the Event drop down to filter the event type (event types may take several minutes to appear).

Overview Campaigns Demographics Funnels Usage Revenue @
Event Attributes
AddNote v|| 4
Event count Events per session
Event count User count
25 125
2 1
15 075
a El
" 05
0s 05
D 66600 eeoteestssbossstssssocseoss 0 666666006 66e6bsse6ssdte6ooss6600ses
i Aug? Aug 14 Aug 21 IrEl Aug7 Aug 14 Aug21

« Continue by adding Authentication (p. 121).
« Learn more about Amazon Pinpoint.

Add Authentication to the Notes App

In the previous section (p. 116) of this tutorial, we created a mobile backend project in AWS Mobile
Hub, then added analytics to the sample note-taking app. This section assumes you have completed
those steps. If you jumped to this step, please go back and start from the beginning (p. 114). In this
tutorial, we will configure a sign-up / sign-in flow in our mobile backend. We will then add a new
authentication activity to our note-taking app.

You should be able to complete this section of the tutorial in 20-30 minutes.

121

https://aws.amazon.com/pinpoint/

AWS Mobile Developer Guide
iOS Notes App

Setup Your Backend

To add User Sign-in to your app you will create the backend resources in your Mobile Hub project, and
then update the configuration file in your app.

Add User Sign-in to the AWS Mobile Hub Project

1. Right-click awsconfiguration. json in your Xcode Project Navigator, choose Delete, and then
choose Move to trash.

. Open the AWS Mobile Hub console.

. Select your project.

. Scroll down to the Add More Backend Features section.
. Choose the User Sign-in tile.

. Choose Email and Password.

N OO AN

. Scroll to the bottom and then Choose Create user pool.

What does this do? You have just created your own user pool in
the Amazon Cognito service. When used in
conjunction with the AWS Mobile sign-in process,
the user pool enforces the password requirement
rules you chose. It also supports sign-up and
forgot my password user flows.

8. Choose your project name in the upper left and then choose Integrate on your iOS app card.

9. Choose Download Cloud Config to get an awsconfiguration. json file updated with the new
services.

Remember Whenever you update the AWS Mobile Hub
project, a new AWS configuration file for your
app is generated.

Connect to Your Backend

To update the linkage between your app and your AWS services:

1. Drag awsconfiguration. json from your download location into the Xcode project folder
containing Info.plist. Select Copy items if needed and Create groups in the options dialog.
Choose Finish.

Note Your system may have modified the
filename to avoid conflicts. Make sure the
file you add to your Xcode project is named
awsconfiguration. json.

Add Auth Dependencies

1. Add the following Auth dependencies in your project's Podfile

platform :ios, '9.0'

122

https://console.aws.amazon.com/mobilehub/home/
http://docs.aws.amazon.com/cognito/latest/developerguide/cognito-user-identity-pools.html

AWS Mobile Developer Guide
iOS Notes App

target :'MyNotes' do
use_frameworks!

Analytics dependency
pod 'AWSPinpoint', '~> 2.6.5'

Auth dependencies

pod 'AWSUserPoolsSignIn', '~> 2.6.5'
pod 'AWSAuthUI', '~> 2.6.5'
pod 'AWSMobileClient', '~> 2.6.5'

other pods
end

Then, in a terminal run:

pod install --repo-update

If you encounter an error message that begins "[!] Failed to connect to GitHub to update
the CocoaPods/Specs . . ." andyour internet connectivity is working, you may need to update
openssl and Ruby.

Create an AWSMobileClient and Initialize the SDK

Import AWSMobileClient and add the following function into the AppDelegate class of
AppDelegate.swift. This will create an instance of AWSMobileClient.

import UIKit
import CoreData

// Anaytics imports
import AWSCore
import AWSPinpoint

// Auth imports
import AWSMobileClient

@UIApplicationMain
class AppDelegate: UIResponder, UIApplicationDelegate {

/7

//Instantiate the AWSMobileClient
func application(_ application: UIApplication, open url: URL,
sourceApplication: String?, annotation: Any) -> Bool {

return AWSMobileClient.sharedInstance().interceptApplication(
application, open: url,
sourceApplication: sourceApplication,
annotation: annotation)

/7

In didFinishLaunching call the AwSMobileClient to register your user pool as the identity provider
that enables users to access your app's AWS resources.

func application(

123

https://stackoverflow.com/questions/38993527/cocoapods-failed-to-connect-to-github-to-update-the-cocoapods-specs-specs-repo/48962041#48962041
https://stackoverflow.com/questions/38993527/cocoapods-failed-to-connect-to-github-to-update-the-cocoapods-specs-specs-repo/48962041#48962041

AWS Mobile Developer Guide
iOS Notes App

_ application: UIApplication,
didFinishLaunchingWithOptions launchOptions:
[UIApplicationLaunchOptionsKey: Any]?) -> Bool {

// Initialize AWSMobileClient

let didFinishLaunching = AWSMobileClient.sharedInstance().interceptApplication(
application, didFinishLaunchingWithOptions:
launchOptions)

// Initialize Pinpoint to enable session analytics
let pinpoint = AWSPinpoint(configuration:
AWSPinpointConfiguration.defaultPinpointConfiguration(
launchOptions: launchOptions))

return didFinishLaunching

What did this do? This will register your sign in providers and fetch
the user pool you created and fetch an identity
that enables a user to access your app's AWS
resources. In this case, the provider is an Amazon
Cognito user pool, but federating Facebook,
Google, SAML and other identity providers is also
supported.

Implement Your Sign-in Ul

The AWS Mobile SDK provides a library that creates a customizable sign-in Ul in your app. To create
your sign-in Ul, add the following imports and then call the library in the viewDidLoad() function of
MasterViewController.swift.

import AWSCore
import AWSPinpoint
import UIKit
import AWSAuthCore
import AWSAuthUI

class MasterViewController: UITableViewController, NSFetchedResultsControllerDelegate {
//

override func viewDidLoad() {
super.viewDidLoad()

// Instantiate sign-in UI from the SDK library
if !AWSSignInManager.sharedInstance().isLoggedIn {
AWSAuthUIViewController
.presentViewController(with: self.navigationController!,
configuration: nil,
completionHandler: { (provider: AWSSignInProvider, error: Error?)

in
if error != nil {
print("Error occurred: \(String(describing: error))")
} else {
// Sign in successful.
}
1))
}
//

124

http://docs.aws.amazon.com/cognito/latest/developerguide/cognito-user-identity-pools.html
http://docs.aws.amazon.com/cognito/latest/developerguide/cognito-user-identity-pools.html

AWS Mobile Developer Guide
iOS Notes App

Run the App and Validate Results

Rebuild the project and run in the Simulator. You should see a sign-in screen. Choose the Create

new account button to create a new account. Once the information is submitted, you will be sent a
confirmation code via email. Enter the confirmation code to complete registration, then sign-in with your
new account.

Tip Use Amazon WorkMail as a test email account

If you do not want to use your own email account
as a test account, create an Amazon WorkMail
service within AWS for test accounts. You can get
started for free with a 30-day trial for up to 25
accounts.

125

https://aws.amazon.com/workmail/

AWS Mobile Developer Guide
iOS Notes App

iPhone 6s —i0S 10.2 (14C89)
Cavrier & 3:37 PM -
My Maotes _Ii‘
Next steps

« Continue by integrating NoSQL Data (p. 126).
« Learn more about Amazon Cognito.

Add Online Data Access to the Notes App

In the previous section (p. 121) of this tutorial, we added a simple sign-up / sign-in flow to the sample
note-taking app with email validation. This tutorial assumes you have completed the previous tutorials.
If you jumped to this step, please go back and start from the beginning (p. 114). In this tutorial, we will
add a NoSQL database to our mobile backend, then configure a basic data access service to the note-
taking app.

126

https://aws.amazon.com/cognito/

AWS Mobile Developer Guide
iOS Notes App

The notes app uses iOS Core Data as a persistence framework. NotesContentProvider.swift is
custom content provider used as a clean interface for managing your application content locally. In the
following steps, you will modify the content provider code to use DynamoDB and sync with the local
Core data.

You should be able to complete this section of the tutorial in about 30-45 minutes.

Set Up Your Backend

To add User Sign-in to your app you will create the backend resources in your Mobile Hub project, and
then update the configuration file in your app.

Add a NoSQL Database to the AWS Mobile Hub Project

Before we work on the client-side code, we need to add a NoSQL database and table to the backend
project:

1. Right-click awsconfiguration. json in your Xcode Project Navigator, choose Delete, and then
choose Move to trash.

. Open the AWS Mobile Hub console.

. Select your project.

. Scroll down to the Add More Backend Features section and then choose the NoSQL Database tile.

oA NN

. Choose Enable NoSQL, choose Add Table, and then choose Example to start with an example
schema.

(9]

. Choose Notes, which most closely matches the model we wish to use.
7. Choose Add attribute, then fill in the details of the new attribute:
« Attribute name: updatedDate
o Type: number
8. Choose Add index then fill in the details of the new index:
« Index name: LastUpdated
« Partition key: user1d
« Sort key: updatedDate
9. Choose Create table
10Choose Create table in the modal dialog.
11Choose your project name in the upper left and then choose Integrate on your iOS app card.
12Choose Download Cloud Config to get an updated awsconfiguration. json file.

Connect to Your Backend

To update the linkage between your app and your AWS services:

1. Drag awsconfiguration. json from your download location into the Xcode project folder
containing Info.plist. Select Copy items if needed and Create groups in the options dialog.
Choose Finish.

Your system may have modified the filename to avoid conflicts. Make sure the file you add to your Xcode
project is named awsconfiguration. json.

Download the Models

To aid in implementing a provider for the table you created, Mobile Hub generated a data model
descriptor file. To add the data model to your project:

127

https://developer.apple.com/library/content/documentation/Cocoa/Conceptual/CoreData/index.html
https://console.aws.amazon.com/mobilehub/home/

AWS Mobile Developer Guide
iOS Notes App

1. Choose your project name in the upper left and then choose Integrate on the iOS app card.
2. Choose Swift Models under Download Models.
3. Unpack the downloaded ZIP file.

4, Find Notes.swift, and then drag and drop it into the folder in Xcode that contains file:/nfo.plist.
Select Copy items if needed and Create groups in the options dialog. Choose Finish.

Add NoSQL Data Dependencies

1. Add the following NoSQL Data dependencies in your project's Podfile

platform :ios, '9.0'
target :'MyNotes' do
use_frameworks!

Analytics dependency
pod 'AWSPinpoint', '~> 2.6.5'

Auth dependencies

pod 'AWSUserPoolsSignIn', '~> 2.6.5'
pod 'AWSAuthUI', '~> 2.6.5'
pod 'AWSMobileClient', '~> 2.6.5'

NoSQL Data dependencies
pod 'AWSDynamoDB', '~> 2.6.5'

other pods
end

Then, in a terminal run:

pod install --repo-update

If you encounter an error message that begins "[!] Failed to connect to GitHub to update
the CocoaPods/Specs . . ." andyour internet connectivity is working, you may need to update
openssl and Ruby.l

Implement Mutation Methods

NotesContentProvider is the basic interface the app uses to communicate with Core data and your
NoSQL table in Amazon DynamoDB. Mutation events handle the CRUD operations when you call its
insertNoteDDB, updateNoteDDB, and deleteNoteDDB methods.

To add these mutation methods to the NotesContentProvider class, add the following import
statement to the file.

import AWSDynamoDB
import AWSAuthCore

Then add CRUD functions (insert, update, and delete) to the NotesContentProvider to the class as
follows.

public class NotesContentProvider {

/!

//Insert a note using Amazon DynamoDB

128

https://stackoverflow.com/questions/38993527/cocoapods-failed-to-connect-to-github-to-update-the-cocoapods-specs-specs-repo/48962041#48962041
https://stackoverflow.com/questions/38993527/cocoapods-failed-to-connect-to-github-to-update-the-cocoapods-specs-specs-repo/48962041#48962041

AWS Mobile Developer Guide
iOS Notes App

func insertNoteDDB(noteId: String, noteTitle: String, noteContent: String) -> String {
let dynamoDbObjectMapper = AWSDynamoDBObjectMapper.default()

// Create a Note object using data model you downloaded from Mobile Hub
let noteItem: Notes = Notes()

noteItem._userId = AWSIdentityManager.default().identityId
noteItem._noteId = noteld

noteItem._title = emptyTitle

noteltem._content = emptyContent

noteItem._creationDate = NSDate().timeIntervalSincel970 as NSNumber

//Save a new item
dynamoDbObjectMapper.save(noteItem, completionHandler: {
(error: Error?) -> Void in

if let error = error {
print("Amazon DynamoDB Save Error on new note: \(error)")
return

}

print("New note was saved to DDB.")

»

return notelItem._noteId!

}

//Insert a note using Amazon DynamoDB
func updateNoteDDB(noteId: String, noteTitle: String, noteContent: String) {

let dynamoDbObjectMapper = AWSDynamoDBObjectMapper.default()
let noteItem: Notes = Notes()

noteItem._userId = AWSIdentityManager.default().identityId
noteItem._noteId = noteld

if (!noteTitle.isEmpty){
noteItem._title = noteTitle
} else {
noteItem._title = emptyTitle
}

if (!noteContent.isEmpty){
notelItem._content = noteContent
} else {
notelItem._content = emptyContent

}

noteItem._updatedDate = NSDate().timeIntervalSincel970 as NSNumber
let updateMapperConfig = AWSDynamoDBObjectMapperConfiguration()
updateMapperConfig.saveBehavior = .updateSkipNullAttributes //ignore any null
value attributes and does not remove in database
dynamoDbObjectMapper.save(noteItem, configuration: updateMapperConfig,
completionHandler: {(error: Error?) -> Void in
if let error = error {
print(" Amazon DynamoDB Save Error on note update: \(error)")
return
}
print("Existing note updated in DDB.")
D)
}

//Delete a note using Amazon DynamoDB
func deleteNoteDDB(noteId: String) {
let dynamoDbObjectMapper = AWSDynamoDBObjectMapper.default()

129

AWS Mobile Developer Guide
iOS Notes App

let itemToDelete = Notes()
itemToDelete?._userId = AWSIdentityManager.default().identityId
itemToDelete?._noteId = noteld

dynamoDbObjectMapper.remove(itemToDelete!, completionHandler: {(error: Error?) -
> Void in
if let error = error {
print(" Amazon DynamoDB Save Error: \(error)")
return
}
print("An note was deleted in DDB.")
D)

Implement Query Methods

This application always asks for the entire data set that the user is entitled to see, so there is no need

to implement complex query management. This simplifies the query () method considerably. The
query() method returns a Cursor (which is a standard mechanism for iterating over data sets returned
from databases).

Add the following query function to the NotesContentProvider class:

func getNotesFromDDB() {

// 1) Configure the query looking for all the notes created by this user (userId =>
Cognito identityId)

let queryExpression = AWSDynamoDBQueryExpression()

queryExpression.keyConditionExpression = "#userId = :userId"

queryExpression.expressionAttributeNames = [
"#userId": "userId",

1

queryExpression.expressionAttributevValues = [
":userId": AWSIdentityManager.default().identityId

1

// 2) Make the query
let dynamoDbObjectMapper = AWSDynamoDBObjectMapper.default()

dynamoDbObjectMapper.query(Notes.self, expression: queryExpression) { (output:
AWSDynamoDBPaginatedOutput?, error: Error?) in
if error != nil {
print("DynamoDB query request failed. Error: \(String(describing: error))")
}
if output != nil {
print("Found [\(output!.items.count)] notes")
for notes in output!.items {
let noteItem = notes as? Notes
print("\nNoteId: \(noteItem!. noteId!)\nTitle:
\(noteItem!._title!)\nContent: \(noteItem!. content!)")
}
}

Add Data Access Calls

Calls to insert, update, delete, and query data stored in Amazon DynamoDB are made in
MasterViewController and DetailsViewController.

130

AWS Mobile Developer Guide
iOS Notes App

1. To create a note in Amazon DynamoDB, add the following call to

noteContentProvider?.insertNoteDDB() to the insert portion of the autosave () function of

DetailViewController.

//

// If this is a NEW note, set the Note Id

if (DetailViewController.noteId == nil) // Insert

{
let id = noteContentProvider?.insert(noteTitle: "", noteContent: "")
noteContentProvider?.insertNoteDDB(noteId: id!, noteTitle: "", noteContent: "")
DetailViewController.noteId = id

}

else // Update

{

let noteId = DetailViewController.noteId

let noteTitle = self.noteTitle.text

let noteContent = self.noteContent.text

noteContentProvider?.update(noteId: noteId!, noteTitle: noteTitle!, noteContent:
noteContent!)

noteContentProvider?.update(noteId: noteId!, noteTitle: noteTitle!, noteContent:
noteContent!)

¥
//

2. To update a note from Amazon DynamoDB , add the following line in to the update portion of the
autosave() function of DetailviewController.

noteContent!)

noteContentProvider?.updateNoteDDB(noteId: noteId!, noteTitle: noteTitle!, noteContent:

3. To delete a note from Amazon DynamoDB, update the following function in the
MasterViewController with a call to deleteNoteDDB().

override func tableView(_ tableView: UITableView, commit editingStyle:
UITableViewCellEditingStyle, forRowAt indexPath: IndexPath) {
if editingStyle == .delete {
let context = fetchedResultsController.managedObjectContext
let noteObj = fetchedResultsController.object(at: indexPath)
let noteId = fetchedResultsController.object(at: indexPath).noteId

//Delete Note Locally
_noteContentProvider?.delete(managedObjectContext: context, managedObj:
noteObj, noteId: noteObj.noteId) //Core Data Delete

//Delete Note in DynamoDB
_noteContentProvider?.deleteNoteDDB(noteId: noteId!)

4. To query for all notes from Amazon DynamoDB, add the following line to the bottom of the
viewDidLoad() function in the MasterViewController:

_noteContentProvider?.getNotesFromDDB()

Note Differences from a real implementation

131

AWS Mobile Developer Guide
How To

We've taken a simplified approach for this
content provider to demonstrate the CRUD
implementation. A real implementation would
need to deal with online state and handle caching
of the data, plus handle appropriate query
capabilities as required by the application.

Run the App and Validate Results

You must be online in order to run this application. Run the application in the emulator. Note that the
initial startup after logging in is slightly longer (due to reading the data from the remote database).

Data is available immediately in the mobile backend. Create a few notes, then view the records within
the AWS Console:

1. Open the Mobile Hub console.

2. Choose your project.

3. Choose Resources on the upper right.

4, Choose the link for your Amazon DynamoDB table.
5. Choose the Items tab.

When you insert, edit or delete notes in the app, you should be able to see the data on the server reflect
your actions almost immediately.

Next Steps

« Learn about Amazon DynamoDB.

AWS Mobile Android and iOS How To

Just Getting Started? Use streamlined steps (p. 2) to install the SDK
and integrate features.

Or, use the contents of this section if your app will integrate existing AWS services.

This section provides information on the steps for achieving specific tasks for integrating your AWS
Mobile features into your Android and iOS apps.

Topics
« How To: AWS Mobile SDK Setup Options (p. 133)
« How To: User Sign-in with Amazon Cognito (p. 146)
« How To: File Storage with Amazon S3 (p. 182)
» How To: NoSQL Database with Amazon DynamoDB (p. 232)
« How To: Serverless Code with AWS Lambda (p. 261)
» How To Add Natural Language Understanding with Amazon Lex (p. 272)
o Convert Text to Speech with Amazon Polly (p. 280)
« How To Stream Data with Amazon Kinesis (p. 281)
« How To: Sync Data with Amazon Cognito Sync (p. 290)

132

https://console.aws.amazon.com/mobilehub/home/
https://aws.amazon.com/dynamodb/

AWS Mobile Developer Guide
Manual SDK Setup

« How To Add Machine Learning with Amazon Machine Learning (p. 294)
« How To For Platform Specific Tasks (p. 300)

How To: AWS Mobile SDK Setup Options

Just Getting Started? Use streamlined steps (p. 2) to install the SDK
and integrate AWS services.

Or, use the contents of this page if your app will
integrate existing AWS services.

This section provides information on how to manually install the AWS Mobile SDK for your Android and
iOS apps.

Topics
« Android: Setup Options for the SDK (p. 133)
« i0S: Setup Options for the SDK (p. 138)

Android: Setup Options for the SDK

Just Getting Started? Use streamlined steps (p. 2) to install the SDK
and integrate features.

Or, use the options on this page if your app integrates existing AWS services.

To get started with the AWS Mobile SDK for Android, you can set up the SDK and start building a new
project, or you can integrate the SDK with an existing project. You can also clone and run the samples to
get a sense of how the SDK works.

Prerequisites

Before you can use the AWS Mobile SDK for Android, you will need the following:

e« An AWS Account

« Android 2.3.3 (API Level 10) or higher (for more information about the Android platform, see Android
Developers)

« Android Studio or Android Development Tools for Eclipse

After completing the prerequisites, you will need to do the following to get started:

1. Get the AWS Mobile SDK for Android.
2. Set permissions in your AndroidManifest.xml file.
3. Obtain AWS credentials using Amazon Cognito.

Step 1: Get the AWS Mobile SDK for Android

There are three ways to get the AWS Mobile SDK for Android.

133

https://github.com/awslabs/aws-sdk-android-samples
http://aws.amazon.com
http://developer.android.com/index.html
http://developer.android.com/index.html
https://developer.android.com/sdk/index.html
http://developer.android.com/sdk/eclipse-adt.html

AWS Mobile Developer Guide
Manual SDK Setup

Option 1: Using Gradle with Android Studio

If you are using Android Studio, add the aws-android-sdk-core dependency to your app/
build.gradle file, along with the dependencies for the individual services that your project will use, as
shown below.

dependencies {
implementation 'com.amazonaws:aws-android-sdk-core:2.6.+"'
implementation 'com.amazonaws:aws-android-sdk-s3:2.6.+"'
implementation 'com.amazonaws:aws-android-sdk-ddb:2.6.+"'

A full list of dependencies are listed below. For dependencies ending in "@aar" use a compile statement
in the following form.

implementation ('com.amazonaws:aws-android-sdk-cognitoauth:2.6.+@aar') { transitive =
true }

Dependency Build.gradle Value

Amazon API Gateway aws-android-sdk-apigateway-core:2.6.+
AWS Auth Core aws-android-sdk-auth-core:2.6.+@aar
AWS Facebook Signin Provider aws-android-sdk-auth-facebook:2.6.+@aar
AWS Google Signln Provider aws-android-sdk-auth-google:2.6.+@aar
AWS Auth Ul aws-android-sdk-auth-ui:2.6.+@aar

AWS Cognito User Pools Signin Provider aws-android-sdk-auth-userpools:2.6.+@aar
Amazon Auto Scaling aws-android-sdk-autoscaling:2.6.+
Amazon CloudWatch aws-android-sdk-cloudwatch:2.6.+
Amazon Cognito Auth aws-android-sdk-cognitoauth:2.6.+@aar
Amazon Cognito Identity Provider aws-android-sdk-cognitoidentityprovider:2.6.+
AWS Core aws-android-sdk-core:2.6.+

Amazon DynamoDB Document Model aws-android-sdk-ddb-document:2.6.+
Amazon DynamoDB Object Mapper aws-android-sdk-ddb-mapper:2.6.+
Amazon DynamoDB aws-android-sdk-ddb:2.6.+

Amazon Elastic Compute Cloud aws-android-sdk-ec2:2.6.+

Amazon Elastic Load Balancing aws-android-sdk-elb:2.6.+

AWS loT aws-android-sdk-iot:2.6.+

Amazon Kinesis aws-android-sdk-kinesis:2.6.+

Amazon Kinesis Video aws-android-sdk-kinesisvideo:2.6.+@aar
Amazon Key Management Service (KMS) aws-android-sdk-kms:2.6.+

AWS Lambda aws-android-sdk-lambda:2.6.+

134

AWS Mobile Developer Guide
Manual SDK Setup

Dependency Build.gradle Value

Amazon Lex aws-android-sdk-lex:2.6.+@aar
Amazon CloudWatch Logs aws-android-sdk-logs:2.6.+

Amazon Machine Learning aws-android-sdk-machinelearning:2.6.+
AWS Mobile Client aws-android-sdk-mobile-client:2.6.+@aar
Amazon Mobile Analytics aws-android-sdk-mobileanalytics:2.6.+
Amazon Pinpoint aws-android-sdk-pinpoint:2.6.+
Amazon Polly aws-android-sdk-polly:2.6.+

Amazon Rekognition aws-android-sdk-rekognition:2.6.+
Amazon Simple Storage Service (S3) aws-android-sdk-s3:2.6.+

Amazon Simple DB (SDB) aws-android-sdk-sdb:2.6.+

Amazon SES aws-android-sdk-ses:2.6.+

Amazon SNS aws-android-sdk-sns:2.6.+

Amazon SQS aws-android-sdk-sqs:2.6.+

Option 2: Import the JAR Files

To obtain the JAR files, download the SDK from http://aws.amazon.com/mobile/sdk. The SDK is stored
in a compressed file named aws-android-sdk-#-#-#, where #-#-# represents the version number.
Source code is available on GitHub.

If using Android Studio:

In the Project view, drag aws-android-sdk-#-#-#-core. jar plus the . jar files for the individual
services your project will use into the apps/1ibs folder. They'll be included on the build path
automatically. Then, sync your project with the Gradle file.

If using Eclipse:

Drag the aws-android-sdk-#-#-#-core. jar file plus the . jar files for the individual services your
project will use, into the 1ibs folder. They'll be included on the build path automatically.

Option 3: Using Maven

The AWS Mobile SDK for Android supports Apache Maven, a dependency management and build
automation tool. A Maven project contains a pom.xm1 file where you can specify the Amazon Web
Services that you want to use in your app. Maven then includes the services in your project, so that you
don't have to download the entire AWS Mobile SDK and manually include JAR files.

Maven is supported in AWS Mobile SDK for Android v. 2.1.3 and onward. Older versions of the SDK are
not available via Maven. If you're new to Maven and you'd like to learn more about it, see the Maven
documentation.

pom.xml Example

Here's an example of how you can add Amazon Cognito Identity, Amazon S3, and Amazon Mobile
Analytics to your project:

135

https://aws.amazon.com/mobile/sdk
https://github.com/aws/aws-sdk-android
http://maven.apache.org/what-is-maven.html
http://maven.apache.org/what-is-maven.html
https://aws.amazon.com/cognito/
https://aws.amazon.com/s3/
https://aws.amazon.com/mobileanalytics/
https://aws.amazon.com/mobileanalytics/

AWS Mobile Developer Guide
Manual SDK Setup

<dependencies>
<dependency>
<groupid>com.amazonaws</groupid>
<artifactid>aws-android-sdk-core</artifactid>
<version>[2.2.0, 2.3)</version>
</dependency>
<dependency>
<groupid>com.amazonaws</groupid>
<artifactid>aws-android-sdk-s3</artifactid>
<version>[2.2.0, 2.3)</version>
</dependency>
<dependency>
<groupid>com.amazonaws</groupid>
<artifactid>aws-android-sdk-mobileanalytics</artifactid>
<version>[2.2.0, 2.3)</version>
</dependency>
</dependencies>

As shown above, the groupld for the AWS Mobile SDK for Android is com.amazonaws. For each
additional service, include a <dependency> element following the model above, and use the
appropriate artifactID from the table below. The <version> element specifies the version of the AWS
Mobile SDK for Android. The example above demonstrate's Maven's ability to use a range of acceptable
versions for a given dependency. To review available versions of the SDK for Android, see the Release
Notes.

The AWS Mobile artifactId values are as follows:

Service/Feature

Amazon APl Gateway

AWS Auth Core

AWS Facebook Signin Provider

AWS Google Signln Provider

AWS Auth Ul

AWS Cognito User Pools Signin Provider
Amazon Auto Scaling

Amazon CloudWatch

Amazon Cognito Auth

Amazon Cognito Identity Provider
AWS Core

Amazon DynamoDB Document Model
Amazon DynamoDB Object Mapper
Amazon DynamoDB

Amazon Elastic Compute Cloud
Amazon Elastic Load Balancing

AWS loT

artifactiD
aws-android-sdk-apigateway-core
aws-android-sdk-auth-core
aws-android-sdk-auth-facebook
aws-android-sdk-auth-google
aws-android-sdk-auth-ui
aws-android-sdk-auth-userpools
aws-android-sdk-autoscaling
aws-android-sdk-cloudwatch
aws-android-sdk-cognitoauth
aws-android-sdk-cognitoidentityprovider
aws-android-sdk-core
aws-android-sdk-ddb-document
aws-android-sdk-ddb-mapper
aws-android-sdk-ddb
aws-android-sdk-ec2
aws-android-sdk-elb

aws-android-sdk-iot

136

https://aws.amazon.com/releasenotes/Android
https://aws.amazon.com/releasenotes/Android

AWS Mobile Developer Guide
Manual SDK Setup

Service/Feature artifactiD

Amazon Kinesis aws-android-sdk-kinesis

Amazon Kinesis Video aws-android-sdk-kinesisvideo
Amazon Key Management Service (KMS) aws-android-sdk-kms

AWS Lambda aws-android-sdk-lambda

Amzon Lex aws-android-sdk-lex

Amazon CloudWatch Logs aws-android-sdk-logs

Amazon Machine Learning aws-android-sdk-machinelearning
AWS Mobile Client aws-android-sdk-mobile-client
Amazon Mobile Analytics aws-android-sdk-mobileanalytics
Amazon Pinpoint aws-android-sdk-pinpoint
Amazon Polly aws-android-sdk-polly

Amazon Rekognition aws-android-sdk-rekognition
Amazon Simple Storage Service (S3) aws-android-sdk-s3

Amazon Simple DB (SDB) aws-android-sdk-sdb

Amazon SES aws-android-sdk-ses

Amazon SNS aws-android-sdk-sns

Amazon SQS aws-android-sdk-sqs

Step 2: Set Permissions in Your Manifest

Add the following permission to your AndroidManifest.xml

<uses-permission android:name="android.permission.INTERNET" />

Step 3: Get AWS Credentials

To use AWS services in your mobile application, you must obtain AWS Credentials using Amazon
Cognito Identity as your credential provider. Using a credentials provider allows your app to access AWS
services without having to embed your private credentials in your application. This also allows you to set
permissions to control which AWS services your users have access to.

To get started with Amazon Cognito, you must create an identity pool. An identity pool is a store of user
identity data specific to your account. Every identity pool has configurable IAM roles that allow you to
specify which AWS services your application's users can access. Typically, a developer will use one identity
pool per application. For more information on identity pools, see the Amazon Cognito Developer Guide.

To create an identity pool for your application:

1. Log in to the Amazon Cognito Console and click Manage Federated Identities, then Create new
identity pool.

2. Enter a name for your Identity Pool and check the checkbox to enable access to unauthenticated
identities. Click Create Pool to create your identity pool.

137

http://docs.aws.amazon.com/cognito/devguide/identity/identity-pools/
https://console.aws.amazon.com/cognito/home

AWS Mobile Developer Guide
Manual SDK Setup

3. Click Allow to create the two default roles associated with your identity pool—one for
unauthenticated users and one for authenticated users.

The next page displays code that creates a credentials provider so you can easily integrate Cognito
Identity with your Android application. You pass the credentials provider object to the constructor of the
AWS client you are using. The credentials provider looks like this:

CognitoCachingCredentialsProvider credentialsProvider = new
CognitoCachingCredentialsProvider(

getApplicationContext(), /* get the context for the application */

"COGNITO IDENTITY POOL", /* Identity Pool ID */

Regions.MY_REGION /* Region for your identity pool--US_EAST 1 or EU_WEST_1%/
)i
Next Steps

« Run the demos: View our sample Android apps that demonstrate common use cases. To run the
sample apps, set up the SDK for Android as described above, and then follow the instructions
contained in the README files of the individual samples.

« Read the API Reference: View the API Reference for the AWS Mobile SDK for Android.

o Try AWS Mobile Hub: Quickly configure and provision an AWS cloud backend for many common
mobile app features, and download end to end working Android demonstration projects, SDK, and
helper code, all generated based on your choices.

« Ask questions: Post questions on the AWS Mobile SDK Forumes.
iOS: Setup Options for the SDK

Just Getting Started? Use streamlined steps (p. 2) to install the SDK
and integrate AWS features.

Or, use the contents of this page if your app will integrate existing AWS services.

Topics
o Include the AWS Mobile SDK for iOS in an Existing Application (p. 138)
« Changing Logging Level (p. 144)
« Targeting Log Output (p. 144)
« To install the DocSet for Xcode (p. 146)

To add the SDK, install the following on your development machine:
« Xcode 7 or later

« iOS 8 or later

You can view the source code in the AWS Mobile SDK for iOS GitHub repository.

Include the AWS Mobile SDK for iOS in an Existing Application

The samples included with the SDK are standalone projects that are already set up. You can also
integrate the SDK into your own existing project. Choose one of the following three ways to import the
SDK into your project:

138

https://github.com/awslabs/aws-sdk-android-samples
http://docs.aws.amazon.com/AWSAndroidSDK/latest/javadoc/
https://forums.aws.amazon.com/forum.jspa?forumID=88
https://github.com/aws/aws-sdk-ios

AWS Mobile Developer Guide
Manual SDK Setup

« Cocoapods
« Carthage
« Dynamic Frameworks

Note
Importing the SDK in multiple ways loads duplicate copies of the SDK into the project and
causes compiler errors.

CocoaPods

1. The AWS Mobile SDK for iOS is available through CocoaPods. Install CocoaPods by running the
following commands from the folder containing your projects *.xcodeproj file.

$ gem install cocoapods

Note
Depending on your system settings, you may need to run the command as administrator
using sudo, as follows:

$ sudo gem install cocoapods
$ pod setup

$ pod init

2. In your project directory (the directory where your *.xcodeproj file is), open the empty text
file named Podfile (without a file extension) and add the following lines to the file. Replace
myAppName with your app name. You can also remove pods for services that you don't use. For
example, if you don't use AWSAutoScaling, remove or do not include the AWSAutoScaling pod.

source 'https://github.com/CocoaPods/Specs.git’

platform :ios, '8.0'
use_frameworks!

target :'YOUR-APP-NAME' do
pod 'AWSAuth'
pod 'AWSAuthCore'
pod 'AWSAuthUI'
pod 'AWSAutoScaling'
pod 'AWSCloudWatch'
pod 'AWSCognito'
pod 'AWSCognitoAuth'
pod 'AWSCognitoIdentityProvider'
pod 'AWSCognitoIdentityProviderASF'
pod 'AWSCore'
pod 'AWSDynamoDB'
pod 'AWSEC2'
pod 'AWSElasticLoadBalancing'
pod 'AWSFacebookSignIn'
pod 'AWSGoogleSignIn'
pod 'AWSIOT'
pod 'AWSKMS'
pod 'AWSKinesis'
pod 'AWSLambda'
pod 'AWSLex'
pod 'AWSLogs'
pod 'AWSMachineLearning'
pod 'AWSMobileAnalytics'
pod 'AWSMobileClient'
pod 'AWSPinpoint'
pod 'AWSPolly'

139

http://cocoapods.org/

AWS Mobile Developer Guide
Manual SDK Setup

pod 'AWSRekognition'

pod 'AWSS3'

pod 'AWSSES'

pod 'AWSSNS'

pod 'AWSSQS'

pod 'AWSSimpleDB'

pod 'AWSUserPoolsSignIn'
end

3. Run the following command:

$ pod install
4. Open *.xcworkspace with Xcode, rebuild your app, and start using the SDK.
Note

Once you have created a workspace, always use *.xcworkspace to open the project instead
of * . xcodeproj.

5. Rebuild your app after reopening it in the workspace to resolve APIs from new libraries called in
your code. This is a good practice any time you add import statements.
Carthage

1. Install the latest version of Carthage.
2. Add the following to your Cartfile:

github "aws/aws-sdk-ios"

3. Run the following command:

$ carthage update

4. With your project open in Xcode, choose your Target. In the General tab, find Embedded
Binaries, then choose the + button.

5. Choose the Add Other button, navigate to the AWS<#ServiceName#>. framework files under
Carthage > Build > iOS and select AWSCore . framework and the other service frameworks you
require. Do not select the Destination: Copy items if needed checkbox when prompted.

e AWSAuth

* AWSAuthCore

e AWSAuthUI

e AWSAutoScaling

e AWSCloudWatch

e AWSCognito

e AWSCognitoAuth

e AWSCognitoIdentityProvider
» AWSCognitoIdentityProviderASF
e AWSCore

¢ AWSDynamoDB

e AWSEC2

» AWSElasticLoadBalancing

e AWSFacebookSignIn

*» AWSGoogleSignIn

e AWSIOT

e AWSKMS

e AWSKinesis

140

https://github.com/Carthage/Carthage#installing-carthage

AWS Mobile Developer Guide
Manual SDK Setup

6. Under the Build Phases tab in your Target, choose the + button on the top left and then select

AWSLambda

AWSLex

AWSLogs
AWSMachineLearning
AWSMobileAnalytics
AWSMobileClient
AWSPinpoint
AWSPolly
AWSRekognition
AWSS3

AWSSES

AWSSNS

AWSSQS

AWSSimpleDB
AWSUserPoolsSignIn

New Run Script Phase.

Setup the build phase as follows. Make sure this phase is below the Embed Frameworks phase.

Run

Shell /bin/sh

bash "${BUILT_PRODUCTS_DIR}/${FRAMEWORKS_FOLDER_PATH}/AWSCore.framework/strip-
frameworks.sh"

Show environment variables in build log: Checked

script only when installing: Not checked

Input Files: Empty
Output Files: Empty

Frameworks

1. Download the SDK from http://aws.amazon.com/mobile/sdk. The SDK is stored in a compressed
file archive named aws-ios-sdk-#.#.#, where '#.#.#' represents the version number. For

version 2.5.0, the filename is aws-ios-sdk-2.5.0.

2. With your project open in Xcode, choose your Target. Under the General tab, find Embedded

Binaries and then choose the + button.

3. Choose Add Other. Navigate to the AWS<#ServiceName#>. framework files and select
AWSCore. framework and the other service frameworks you require. Select the Destination:

Copy items if needed checkbox when prompted.

AWSAuth
AWSAuthCore
AWSAuthUI
AWSAutoScaling
AWSCloudWatch
AWSCognito
AWSCognitoAuth

AWSCognitoIdentityProvider

AWSCoc_:jnitoIdentityProviderAéEﬂ‘I

https://aws.amazon.com/mobile/sdk

AWS Mobile Developer Guide
Manual SDK Setup

e AWSCore

e AWSDynamoDB

e AWSEC2

» AWSElasticLoadBalancing
 AWSFacebookSignIn
e AWSGoogleSignIn

e AWSIOT

e AWSKMS

¢ AWSKinesis

¢ AWSLambda

¢ AWSLex

e AWSLogs

e AWSMachineLearning
e AWSMobileAnalytics
e AWSMobileClient

e AWSPinpoint

e AWSPolly

e AWSRekognition

e AWSS3

e AWSSES

e AWSSNS

¢ AWSSQS

e AWSSimpleDB

e AWSUserPoolsSignIn

4. Under the Build Phases tab in your Target, click the + button on the top left and then select New
Run Script Phase.

5. Setup the build phase as follows. Make sure this phase is below the Embed Frameworks phase.

Shell /bin/sh

bash "${BUILT_PRODUCTS_DIR}/${FRAMEWORKS_FOLDER_PATH}/AWSCore.framework/strip-
frameworks.sh"

Show environment variables in build log: Checked
Run script only when installing: Not checked

Input Files: Empty
Output Files: Empty

Update the SDK to a Newer Version

This section describes how to pick up changes when a new SDK is released.

CocoaPods

Run the following command in your project directory. CocoaPods automatically picks up the
changes.

$ pod update
—r i g

142

AWS Mobile Developer Guide
Manual SDK Setup

Note
If your pod update command fails, delete Podfile.lock and Pods/ and then run pod
install to cleanly install the SDK.

Carthage

Run the following command in your project directory. Carthage automatically updates your
frameworks with the new changes.

$ carthage update
Frameworks
1. In Xcode select the following frameworks in Project Navigator and press the delete key. Then
select Move to Trash:
¢ AWSAuth
e AWSAuthCore
e AWSAuthUI
e AWSAutoScaling
e AWSCloudWatch
e AWSCognito
e AWSCognitoAuth
e AWSCognitoIdentityProvider
e AWSCognitoIdentityProviderASF
e AWSCore
¢ AWSDynamoDB
e AWSEC2
e AWSElasticLoadBalancing
e AWSFacebookSignIn
e AWSGoogleSignIn
e AWSIOT
e AWSKMS
e AWSKinesis
¢ AWSLambda
e AWSLex
e AWSLogs
* AWSMachineLearning
e AWSMobileAnalytics
e AWSMobileClient
e AWSPinpoint
e AWSPolly
« AWSRekognition
e AWSS3
e AWSSES
e AWSSNS
e AWSSQS
» AWSSimpleDB

e AWSUserPoolsSignIn 143

2. Follow the Frameworks installation steps in the previous section, to include the new version of the
SDK.

AWS Mobile Developer Guide
Manual SDK Setup

Logging

As of version 2.5.4 of this SDK, logging utilizes CocoaLumberjack SDK, a flexible, fast, open source
logging framework. It supports many capabilities including the ability to set logging level per output
target, for instance, concise messages logged to the console and verbose messages to a log file.

CocoalLumberjack logging levels are additive such that when the level is set to verbose, all messages
from the levels below verbose are logged. It is also possible to set custom logging to meet your needs.
For more information, see CocoaLumberjack Logging Levels

Changing Logging Level

You can change the logging level to suit the phase of your development cycle by importing AWSCore and
calling:

iOS - Swift
AWSDDLog.sharedInstance().logLevel = .verbose
The following logging level options are available:

e .off

e .error

e .warning
 .info

e .debug

¢ .verbose

We recommend setting the log level to . off before publishing to the App Store.
iOS - Objective-C

[AWSDDLog sharedInstance].logLevel = AWSDDLogLevelVerbose;
The following logging level options are available:

e AWSDDLogLevelOff

e AWSDDLogLevelError

e AWSDDLogLevelWarning
* AWSDDLogLevelInfo

» AWSDDLogLevelDebug

e AWSDDLogLevelVerbose

We recommend setting the log level to AWSDDLogLevelOff before publishing to the App Store.

Targeting Log Output
CocoaLumberjack can direct logs to file or used as a framework that integrates with the Xcode console.

To initialize logging to files, use the following code:

iOS - Swift

let fileLogger: AWSDDFileLogger = AWSDDFileLogger() // File Logger

144

https://github.com/CocoaLumberjack/CocoaLumberjack
https://github.com/CocoaLumberjack/CocoaLumberjack/blob/master/Documentation/CustomLogLevels.md

AWS Mobile Developer Guide
Manual SDK Setup

fileLogger.rollingFrequency = TimeInterval(60*60%24) // 24 hours
fileLogger.logFileManager .maximumNumberOfLogFiles = 7
AWSDDLog.add(fileLogger)

iOS - Objective-C

AWSDDFileLogger *fileLogger = [[AWSDDFileLogger alloc] init]; // File Logger
fileLogger.rollingFrequency = 60 * 60 * 24; // 24 hour rolling
fileLogger.logFileManager .maximumNumberOfLogFiles = 7;

[AWSDDLog addLogger:fileLogger];

To initialize logging to your Xcode console, use the following code:

iOS - Swift

AWSDDLog.add(AWSDDTTYLogger.sharedInstance) // TTY = Xcode console

iOS - Objective-C

[AWSDDLog addLogger:[AWSDDTTYLogger sharedInstance]]; // TTY = Xcode console

To learn more, see CocoaLumberjack on GitHub.

Sample Apps

The AWS Mobile SDK for iOS includes sample apps that demonstrate common use cases.
Amazon Cognito Your User Pools Sample (Objective-C)

This sample demonstrates how sign up and sign in a user to display an authenticated portion of your
app.

AWS services demonstrated:

» Amazon Cognito Pools
« Amazon Cognito Identity

Amazon DynamoDB Object Mapper Sample (Swift, Objective-C)
This sample demonstrates how to insert, update, delete, query items using DynamoDBObjectMapper.
AWS services demonstrated:

» Amazon DynamoDB
« Amazon Cognito Identity

Amazon S3 Transfer Utility Sample (Swift, Objective-C)
This sample demonstrates how to use the Amazon S3 TransferUtility to download / upload files.
AWS services demonstrated:

» Amazon S3
« Amazon Cognito Identity

145

https://github.com/CocoaLumberjack/CocoaLumberjack
https://github.com/awslabs/aws-sdk-ios-samples/tree/master/CognitoYourUserPools-Sample/Objective-C/
http://docs.aws.amazon.com/cognito/latest/developerguide/cognito-user-identity-pools.html
https://aws.amazon.com/cognito/
https://github.com/awslabs/aws-sdk-ios-samples/tree/master/DynamoDBObjectMapper-Sample/Swift
https://github.com/awslabs/aws-sdk-ios-samples/tree/master/DynamoDBObjectMapper-Sample/Objective-C/
https://aws.amazon.com/dynamodb/
https://aws.amazon.com/cognito/
https://github.com/awslabs/aws-sdk-ios-samples/tree/master/S3TransferUtility-Sample/Swift/
https://github.com/awslabs/aws-sdk-ios-samples/tree/master/S3TransferUtility-Sample/Objective-C/
https://aws.amazon.com/s3/
https://aws.amazon.com/cognito/

AWS Mobile Developer Guide
User Sign-in (Amazon Cognito)

Install the Reference Documentation in Xcode

The AWS Mobile SDK for iOS includes documentation in the DocSets format that you can view within
Xcode. The easiest way to install the documentation is to use the macOS terminal.

To install the DocSet for Xcode

Open the macOS terminal and go to the directory containing the expanded archive. For example:

$ c¢d ~/Downloads/aws-ios-sdk-2.5.0

Note
Replace 2.5.0 inthe preceding example with the version number of the AWS Mobile SDK for
iOS that you downloaded.

Create a directory called ~/Library/Developer/Shared/Documentation/DocSets:
$ mkdir -p ~/Library/Developer/Shared/Documentation/DocSets

Copy (or move) documentation/com.amazon.aws.ios.docset from the SDK installation files to the
directory you created in the previous step:

$ mv documentation/com.amazon.aws.ios.docset ~/Library/Developer/Shared/
Documentation/DocSets/

If Xcode was running during this procedure, restart Xcode. To browse the documentation, go to Help,
click Documentation and API Reference, and select AWS Mobile SDK for iOS v2.0 Documentation
(where '2.0' is the appropriate version number).

Next Steps

« Run the demos: View our sample iOS apps that demonstrate common use cases. To run the sample
apps, set up the SDK for iOS as described above, and then follow the instructions contained in the
README files of the individual samples.

« Read the API Reference: View the API Reference for the AWS Mobile SDK for Android.

« Try AWS Mobile Hub: Quickly configure and provision an AWS cloud backend for many common
mobile app features, and download end to end working iOS demonstration projects, SDK, and helper
code, all generated based on your choices.

« Ask questions: Post questions on the AWS Mobile SDK Forumes.

How To: User Sign-in with Amazon Cognito

Just Getting Started? Use streamlined steps (p. 20) to install the SDK
and integrate Amazon Cognito.

*Or, use the contents of this page if your app will integrate existing
AWS services.

This section provides information on the steps for achieving specific tasks for integrating User Signin
features into your Android and iOS apps.

Topics
« How to Integrate Your Existing Identity Pool (p. 147)
« Sign-out a Signed-in User (p. 153)
« Set Up Facebook Authentication (p. 158)

146

https://github.com/awslabs/aws-sdk-iOS-samples
http://docs.aws.amazon.com/AWSiOSSDK/latest/
https://forums.aws.amazon.com/forum.jspa?forumID=88

AWS Mobile Developer Guide
User Sign-in (Amazon Cognito)

« Set Up Google Authentication (p. 161)
« Setting Up Custom Authentication (p. 179)
o Customize the SDK Sign-In Ul (p. 179)

How to Integrate Your Existing Identity Pool

Just Getting Started? Use streamlined steps (p. 20) to install the SDK
and integrate Amazon Cognito.

The Get Started (p. 20) section of this guide allows you to create new resources and complete the
steps described on this page in minutes. If you want to import existing resources or create them from
scratch, this page will walk you through the following steps:

« Set up short-lived credentials for accessing your AWS resources using a Cognito Identity Pool.

« Create an AWS Mobile configuration file that ties your app code to the identity pool that enables users

to acces your AWS resources.

« Make small adjustments to your app code to install the SDK and retrieve AWS credentials for your user.

Set Up Your Backend

Import or Create a New Identity Pool

« If you already have an Amazon Cogpnito Identity Pool and know its ID and region, you can skip to
Connect to Your Backend (p. 147).

To create a new identity pool:

1. Go to Amazon Cognito Console and choose Manage Federated Identities.
2. Choose Create new Identity pool on the top left of the console.

3. Type a name for the Identity pool, select Enable access to unauthenticated identities under the
Unauthenticated Identities section, and then choose Create pool on the bottom right.

4. Expand the View Details section to see the two roles that are to be created to enable access to your
bucket. Copy and keep both the Authenticated and Unauthenticated role names, in the form of
Cognito_<IdentityPoolName>Auth Role and Cognito_<IdentityPoolName>Unauth_Role.

In many cases, you will modify the permissions policy of these roles to control access to AWS resources

that you add to your app.
5. Choose Allow on the bottom right.

6. In the code snippet labeled Get AWSCredentials displayed by the console, copy the Identity Pool ID
and the Region for use in a following configuration step. You will use these values to connect your
backend to your app.

Connect to Your Backend

Take the following steps to connect your app to its backedn.

Topics
« Create the awsconfiguration.json file (p. 148)
« Add the awsconfiguration.json file to your app (p. 148)
« Add the SDK to your App (p. 149)

147

http://docs.aws.amazon.com/cognito/latest/developerguide/identity-pools.html
https://console.aws.amazon.com/cognito

AWS Mobile Developer Guide
User Sign-in (Amazon Cognito)

Create the awsconfiguration.json file

1. Create a file with name awsconfiguration. json with the following contents:

{
"Version": "1.0",
"CredentialsProvider": {
"CognitoIdentity": {
"Default": {
"PoolId": "COGNITO-IDENTITY-POOL-ID",
"Region": "COGNITO-IDENTITY-POOL-REGION"
}
}
}l
"IdentityManager" : {
"Default" : {
}
}
}

2. Make the following changes to the configuration file.
» Replace the COGNITO-IDENTITY-POOL-ID with the identity pool ID.
» Replace the COGNITO-IDENTITY-POOL-REGION with the region the identity pool was created in.

Need to find your pool's ID and region? Go to Amazon Cognito Console and choose
Manage Federated Identities, then choose your
pool and choose Edit identity pool. Copy the
value of Identity pool ID.

Insert this region value into the following
form to create the value you need for this
integration.

"Region": "REGION-PREFIX-OF-YOUR-POOL-
IDp".

For example, if your pool ID is us-
east-1:01234567-yyyy-0123-
xxxx-012345678901, then your integration
region value would be:

"Region": "us-east-1"

Add the awsconfiguration.json file to your app
Android - Java

In the Android Studio Project Navigator, right-click your app's res folder, and then choose New >
Directory. Type raw as the directory name and then choose OK.

148

https://console.aws.amazon.com/cognito

AWS Mobile Developer Guide
User Sign-in (Amazon Cognito)

@ Android Studio File Edit View Navigate Code Analyze Refactor Build Run Tools VCS Window

L] L] « MyApplication [~/Downloads/MyApplication] - .../app/src/mainfjava/com/dzmedia/android/m
el TR <] ¢ Chapp ~] L
. MyApplication = = _app sre main) " res)
1§ Android v @ 8 1T g activity mainxml € MainActivity java
E‘ 4 app 1 package com,dzmedia.android.myapplication;
= manifests 2
h java ¢ Kotlin File/Class
8 . . ; Sample Data Directory wvit
fa: (3 Gradle Scripts Link C++ Project with Gradle 2 File o
g Cut 36 X = Scratch File {¥N ‘eState) {
& Copy %C Directory
5 Copy Path - _Q&EC Image Asset
] Copy Relative Path {#C
3 - Vector Asset
a ¥ Paste BV
% o Gradle Kotlin DSL Build Script
: Find in Path... G ®8F T T T

Drag the awsconfiguration. json you created into the res/raw folder. Android gives a resource
ID to any arbitrary file placed in this folder, making it easy to reference in the app.

Android - Kotlin

In the Android Studio Project Navigator, right-click your app's res folder, and then choose New >
Directory. Type raw as the directory name and then choose OK.

@ Android Studio File Edit View Navigate Code Analyze Refactor Build Run Tools VCS Window

e @ « MyApplication [~/Downloads/MyApplication] - .../app/src/mainfjava/com/dzmedia/android/m
(] TR o v & Ciapp ~] L
. MyApplication = app src main » [res
i Android v @ 5| #- 1 o activity mainxml © MainActivity java
!' J app 1 package com.dzmedia.android.myapplication;
“ manifests 2
n java ¢ Kotlin File/Class
res Sample Data Directory vity {
[. . . h
§ (3 Gradle Scripts Link C++ Project with Gradle d File
2 Cut 98 % = Scratch File 3N estate) {
= Copy £C Directory
5 Copy Path _ _Q&@C [nmnelisset
8 Copy Relative Path {3C
3 - Vector Asset
2 [V Paste RV
‘5; Find in Path ORE Gradle Kotlin DSL Build Script
! ind in Path... R e e e

Drag the awsconfiguration. json you created into the res/raw folder. Android gives a resource
ID to any arbitrary file placed in this folder, making it easy to reference in the app.

iOS - Swift
Drag the awsconfiguration. json into the folder containing your Info.plist file in your Xcode
project. Choose Copy items and Create groups in the options dialog.

Add the SDK to your App

Android - Java
Set up AWS Mobile SDK components as follows:

1. Add the following to app/build.gradle:

dependencies {

149

AWS Mobile Developer Guide
User Sign-in (Amazon Cognito)

implementation ('com.amazonaws:aws-android-sdk-mobile-client:2.6.+@aar"')
{ transitive = true }

// other dependencies

2. Perform a Gradle sync to download the AWS Mobile SDK components into your app.

. Add the following code to the onCreate method of your main or startup activity. This will
establish a connection with AWS Mobile. AWSMobileClient is a singleton that will be an
interface for your AWS services.

Once the network call to retrieve the user's AWS identity ID has succeeded, you can get the users
identity using getCachedUserID() from the AWSIdentityManager.

import com.amazonaws.auth.AWSCredentialsProvider;
import com.amazonaws.mobile.auth.core.IdentityHandler;
import com.amazonaws.mobile.auth.core.IdentityManager;
import com.amazonaws.mobile.client.AWSMobileClient;
import com.amazonaws.mobile.client.AWSStartupHandler;
import com.amazonaws.mobile.client.AWSStartupResult;

public class MainActivity extends AppCompatActivity {

@Override

protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.activity_main);

AWSMobileClient.getInstance().initialize(this, new AWSStartupHandler() {
@Override
public void onComplete(AWSStartupResult awsStartupResult) {

//Make a network call to retrieve the identity ID

// using IdentityManager. onIdentityId happens UPon success.

IdentityManager.getDefaultIdentityManager().getUserID(new
IdentityHandler() {

@Override
public void onIdentityId(String s) {

//The network call to fetch AWS credentials succeeded, the

cached
// user ID is available from IdentityManager throughout your
app
Log.d("MainActivity", "Identity ID is: " + s);
Log.d("MainActivity", "Cached Identity ID: " +
IdentityManager.getDefaultIdentityManager().getCachedUserID());
}
@Override
public void handleError(Exception e) {
Log.e("MainActivity", "Error in retrieving Identity ID: " +
e.getMessage());
}

)i
}

}) .execute();

When you run your app, you should see no behavior change. To verify success, look for the
message "Welcome to AWS!" in your debug output.

150

AWS Mobile Developer Guide
User Sign-in (Amazon Cognito)

Android - Kotlin
Set up AWS Mobile SDK components as follows:

1. Add the following to app/build.gradle:

dependencies {
implementation ('com.amazonaws:aws-android-sdk-mobile-client:2.6.+@aar"')
{ transitive = true }

// other dependencies

}

2. Perform a Gradle sync to download the AWS Mobile SDK components into your app.

3. Add the following code to the onCreate method of your main or startup activity. This will
establish a connection with AWS Mobile. AWSMobileClient is a singleton that will be an
interface for your AWS services.

Once the network call to retrieve the user's AWS identity ID has succeeded, you can get the users
identity using getCachedUserID() from the AWSIdentityManager.

import com.amazonaws.auth.AWSCredentialsProvider;
import com.amazonaws.mobile.auth.core.IdentityHandler;
import com.amazonaws.mobile.auth.core.IdentityManager;
import com.amazonaws.mobile.client.AWSMobileClient;
import com.amazonaws.mobile.client.AWSStartupHandler;
import com.amazonaws.mobile.client.AWSStartupResult;

class MainActivity : AppCompatActivity() {
override fun onCrearte(savedInstanceState: Bundle?) {
super.onCreate(savedInstanceState)
setContentView(R.layout.activity_main)

AWSMobileClient.getInstance().initialize(this) {
IdentityManager.defaultIdentityManager.getUserID(
object : IdentityHandler() {
override fun onIdentityId(s: String) {
// The netwirk call to fetch AWS credentials succeeded
Log.d(TAG, "Identity ID is: ${s}")
}

override fun handleError(ex: Exception) {
Log.e(TAG, "Error: ${ex.message}")
}
}
)

}.execute()

When you run your app, you should see no behavior change. To verify success, look for the
message "Welcome to AWS!" in your debug output.
iOS - Swift
Set up AWS Mobile SDK components as follows:

1. Add the AWSMobileClient pod to your Podfile to install the AWS Mobile SDK.

platform :ios, '9.0'

151

AWS Mobile Developer Guide
User Sign-in (Amazon Cognito)

target :'YOUR-APP-NAME' do
use_frameworks!

pod 'AWSMobileClient', '~> 2.6.13'
other pods

end

2. Runpod install --repo-update in your app root folder before you continue.

If you encounter an error message that begins"[!] Failed to connect to GitHub to
update the CocoaPods/Specs . . ." andyourinternet connectivity is working, you may
need to update openssl and Ruby.

3. Add the following code to your AppDelegate to establish a run-time connection with AWS Mobile.

import UIKit
import AWSMobileClient

@UIApplicationMain
class AppDelegate: UIResponder, UIApplicationDelegate {

func application(_ application: UIApplication,
didFinishLaunchingWithOptions launchOptions:

[UIApplicationLaunchOptionsKey: Any]?) -> Bool {

// Uncomment to turn on logging, look for "Welcome to AWS!" to confirm
success

// AWSDDLog.add(AWSDDTTYLogger.sharedInstance)

// AWSDDLog.sharedInstance.logLevel = .info

// Instantiate AWSMobileClient to get AWS user credentials
return AWSMobileClient.sharedInstance().interceptApplication(application,
didFinishLaunchingWithOptions: launchOptions)

¥

When you run your app, you should see no behavior change. To verify success, turn on logging
by uncommenting the lines in the preceding example, and look for the message "Welcome to
AWS! " in your the output.

4. To get the users identity, use getCredentialsProvider () to access AWSIdentityManager,
shown here being done in a ViewController.

import UIKit
import AWSMobileClient
import AWSAuthCore

class ViewController: UIViewController {

@IBOutlet weak var textfield: UITextField!
override func viewDidLoad() {
super.viewDidLoad()
textfield.text = "View Controller Loaded"

// Get the identity Id from the AWSIdentityManager

let appDelegate = UIApplication.shared.delegate as! AppDelegate

let credentialsProvider =
AWSMobileClient.sharedInstance().getCredentialsProvider()

152

https://stackoverflow.com/questions/38993527/cocoapods-failed-to-connect-to-github-to-update-the-cocoapods-specs-specs-repo/48962041#48962041

AWS Mobile Developer Guide
User Sign-in (Amazon Cognito)

let identityId = AWSIdentityManager.default().identityId

Next Steps

« For further information, see Amazon Cognito Developer Guide.
Sign-out a Signed-in User

Prerequisite This section describes how to add sign-out flow
for a signed-in user. In the following example, the
built-in AWS Mobile SDK sign-in/sign-up screen is
displayed after the user signs out.

The examples on this page assume that you have
added the AWS Mobile SDK to your mobile app
using the steps on the Add User Sign-in page, and
have configured an identity provider.

Enable User Sign-out

Android - Java

In the following example, AWSMobileClient is instantiated within the onCreate method of

an activity called AuthenticatorActivity. If the client does not find a cached identity from a
previous sign-in, it retrieves an unauthenticated “guest” Amazon Cognito Federated Identity ID that
is used to access other AWS services. In Logcat, look for the string: welcome to AWS! to see that
the client has successfully instantiated.

If the user already has a cached authenticated identity ID from a previous sign-in, then
AWSMobileClient will resume the session without an additional sign-in.

A SignInStateChangeListener object is added to IdentityManager, which captures
onUserSignedIn and onUserSignedOut events.

Finally, showSignIn() is called to create a SignInUI object, and to call the object's login
method. This displays the built-in sign-in Ul of the SDK, and defines MainActivity as the
navigation target of a successful sign-in. The SignInUI calls are placed in a separate function so
they can also easily be called when the onUserSignedout event fires.

In Logcat, a successful sign-in prints the string; Sign-in succeeded.

// AuthenticatorActivity.java
package com.YOUR-DOMAIN.android.YOUR-APP-NAME;

import android.content.Intent;

import android.support.v7.app.AppCompatActivity;
import android.os.Bundle;

import android.util.Log;

import android.widget.TextView;

// AWSMobileClient imports
import com.amazonaws.mobile.client.AWSMobileClient;
import com.amazonaws.mobile.client.AWSStartupHandler;

153

http://docs.aws.amazon.com/cognito/latest/developerguide/what-is-amazon-cognito.html
http://docs.aws.amazon.com/aws-mobile/latest/developerguide/add-aws-mobile-user-sign-in.html

AWS Mobile Developer Guide
User Sign-in (Amazon Cognito)

import com.amazonaws.mobile.client.AWSStartupResult;

// AWS SDK sign-in UI imports

import com.amazonaws.mobile.auth.core.IdentityHandler;

import com.amazonaws.mobile.auth.core.IdentityManager;

import com.amazonaws.mobile.auth.core.SignInStateChangeListener;
import com.amazonaws.mobile.auth.ui.SignInUI;

public class AuthenticatorActivity extends AppCompatActivity {

@Override

protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.activity_authenticator);

AWSMobileClient.getInstance().initialize(this).execute();

// Sign-in listener
IdentityManager.getDefaultIdentityManager().addSignInStateChangeListener(new
SignInStateChangeListener() {
@Override
public void onUserSignedIn() {
Log.d(LOG_TAG, "User Signed In");

}

// Sign-out listener
@Override
public void onUserSignedoOut() {

Log.d(LOG_TAG, "User Signed Out");
showSignIn();

}
i
showSignIn();
}
/*
* Display the AWS SDK sign-in/sign-up UI
*/

private void showSignIn() {
Log.d(LOG_TAG, "showSignIn");

SignInUI signin = (SignInUI)
AWSMobileClient.getInstance().getClient(AuthenticatorActivity.this, SignInUI.class);
signin.login(AuthenticatorActivity.this, MainActivity.class).execute();

}

MainActivity displays a sign-out button, that calls the signout () method of the
IdentityManager. This will fire the SignInStateChangeListener.onSignedOut() event
defined in the AuthenticatorActivity. In Logcat, you should see the string: Signing out....

onUserSignedout() then calls showSignIn which causes the sign-in screen to reappear.

package com.dzmedia.android.YOUR-APP-NAME;

import android.support.v7.app.AppCompatActivity;
import android.os.Bundle;

import android.util.Log;

import android.view.View;

import android.widget.Button;

154

AWS Mobile Developer Guide
User Sign-in (Amazon Cognito)

import android.widget.TextView;

import com.amazonaws.mobile.auth.core.IdentityHandler;
import com.amazonaws.mobile.auth.core.IdentityManager;
import com.amazonaws.mobile.client.AWSMobileClient;

public class MainActivity extends AppCompatActivity {

@Override

protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.activity_main);

// Create log out Button on click listener
Button clickButton = (Button) findviewById(R.id.signOutButton);
clickButton.setOnClickListener(new View.OnClickListener() {

public void onClick(View v) {
IdentityManager.getDefaultIdentityManager().signout();

)i
}
// other MainActivity code

Android - Kotlin

In the following example, AWSMobileClient is instantiated within the onCreate method of

an activity called AuthenticatorActivity. If the client does not find a cached identity from a
previous sign-in, it retrieves an unauthenticated “guest” Amazon Cognito Federated Identity ID that
is used to access other AWS services. In Logcat, look for the string: Welcome to AWS! to see that
the client has successfully instantiated.

If the user already has a cached authenticated identity ID from a previous sign-in, then
AwWSMobileClient will resume the session without an additional sign-in.

A SignInStateChangeListener object is added to IdentityManager, which captures
onUserSignedIn and onUserSignedOut events.

Finally, showSignIn() is called to create a SignInUI object, and to call the object's login
method. This displays the built-in sign-in Ul of the SDK, and defines MainActivity as the
navigation target of a successful sign-in. The SignInUI calls are placed in a separate function so
they can also easily be called when the onUsersignedout event fires.

In Logcat, a successful sign-in prints the string; Sign-in succeeded.

// AuthenticatorActivity.java
package com.your-domain.android.YOUR-APP-NAME;

import android.content.Intent;

import android.support.v7.app.AppCompatActivity;
import android.os.Bundle;

import android.util.Log;

import android.widget.TextView;

// AWSMobileClient imports

import com.amazonaws.mobile.client.AWSMobileClient;
import com.amazonaws.mobile.client.AWSStartupHandler;
import com.amazonaws.mobile.client.AWSStartupResult;

// AWS SDK sign-in UI imports
import com.amazonaws.mobile.auth.core.IdentityHandler;

155

AWS Mobile Developer Guide
User Sign-in (Amazon Cognito)

import com.amazonaws.mobile.auth.core.IdentityManager;
import com.amazonaws.mobile.auth.core.SignInStateChangeListener;
import com.amazonaws.mobile.auth.ui.SignInUI;

class AuthenticatorActivity : AppCompatActivity() {
override fun onCreate(savedInstanceState: Bundle?) {
super.onCreate(savedInstanceState)
AWSMobileClient.getInstance().initialize(this).execute()

// Sign-in listener
IdentityManager.defaultIdentityManager.addSignInStateChangeListener(
object : SignInStateChangeListener() {
override fun onUserSignedIn() {
// Do something

}

override fun onUserSignedOut() {
showSignIn()
}
}
)
showSignIn()

}

private fun showSignIn() {
val ul = AWSMobileClient.getInstance().getClient(this@AuthenticatorActivity,
SignInUI::class.java)
ui.login(this@AuthenticatorActivity, MainActivity::class.java).execute()

}

MainActivity displays a sign-out button, that calls the signout () method of the
IdentityManager. This will fire the SignInStateChangeListener.onSignedOut() event
defined in the AuthenticatorActivity. In Logcat, you should see the string: Signing out....

onUserSignedOut () then calls showSignIn which causes the sign-in screen to reappear.

package com.YOUR-DOMAIN.android.YOUR-APP-NAME;

import android.support.v7.app.AppCompatActivity;
import android.os.Bundle;

import android.util.Log;

import android.view.View;

import android.widget.Button;

import android.widget.TextView;

import com.amazonaws.mobile.auth.core.IdentityHandler;
import com.amazonaws.mobile.auth.core.IdentityManager;
import com.amazonaws.mobile.client.AWSMobileClient;

class MainActivity : AppCompatActivity() {
override fun onCreate(savedInstanceState: Bundle?) {
super.onCreate(savedInstanceState)
setContentView(R.layout.activity main)

signOutButton.onClick {
IdentityManager.defaultIdentityManager.signOut()

}

iOS - Swift

In the following example, AWSMobileClient is instantiated within the didfinishlaunching and
open url blocks in AppDelegate, as described in Add User Sign-In (p. 20). If the client does

156

AWS Mobile Developer Guide
User Sign-in (Amazon Cognito)

not find a cached identity from a previous sign-in, it retrieves an unauthenticated “guest” Amazon
Cognito Federated Identity ID that is used to access other AWS services. In debug output, look for
the string: Wwelcome to AWS!.

If the user already has a cached authenticated identity ID from a previous sign-in, then
AwWSMobileClient will resume the session without an additional sign-in.

When AWSMobileClient is instantiated, the app navigates to a Navigation Control hosted in a
ViewController whose UIView contains a sign-out button. If the user is not already signed in, the
viewDidLoad of the ViewController calls the built-in sign-in Ul of the AWS Mobile SDK. A successful
sign-in prints the string: Sign-in succeeded to debug output.

In the action of the sign-out button, a successful sign-out calls for the sign-in screen to be displayed
again.

// ViewController.swift
import UIKit

import AWSMobileClient

import AWSAuthCore

import AWSAuthCore

import AWSAuthUI

class ViewController: UIViewController {

@IBOutlet weak var textfield: UITextField!
public var identityId: String = ""

override func viewDidLoad() {
super.viewDidLoad()

showSignIn()

}

override func didReceiveMemoryWarning() {
super .didReceiveMemoryWarning()
// Dispose of any resources that can be recreated.

}

@IBAction func signOutButtonPress(_ sender: Any) {
AWSSignInManager.sharedInstance().logout(completionHandler: {(result: Any?,
error: Error?) in
self.showSignIn()
// print("Sign-out Successful: \(signInProvider.getDisplayName)");

»

func showSignIn() {
AWSAuthUIViewController.presentViewController(with:
self.navigationController!, configuration: nil, completionHandler: {
(provider: AWSSignInProvider, error: Error?) in

if error != nil {
print("Error occurred: \(String(describing: error))")
} else {

print("Sign-in successful.")

»

157

AWS Mobile Developer Guide
User Sign-in (Amazon Cognito)

‘ }

Set Up Facebook Authentication

To use the following Facebook service configuration steps to federate Facebook as a user sign-in provider
for AWS services called in your app, try the AWS Mobile HubUser Sign-in feature (p. 348).

You must first register your application with Facebook by using the Facebook Developers portal.

Mobile Hub generates code that enables you to use Facebook to provide federated authentication for
your mobile app users. This topic explains how to set up Facebook as an identity provider for your app.

If you already have a Facebook app ID, copy and paste it into the Facebook App ID field in the Mobile
Hub console, and choose Save changes.

To get a Facebook app ID

1. In the Facebook Developers portal, sign in with your Facebook credentials.

2. From Create App, choose Add a New App (note: this menu label will be My Apps if you have
previously created an app.

Add a New App

3. If asked, choose the platform of your app that will use Facebook sign-in, and basic setup.

4. Type a display name for your app, select a category for your app from the Category drop-down list,
and then choose Create App ID.

Create a New App ID

Get stare niegratng Facebook into your app or wabsita

Display Mame

Contact Email

user@example.com

By proceading, you agrea to the Facebook Platform Policies Cancel

158

https://developers.facebook.com/
https://developers.facebook.com/

AWS Mobile Developer Guide
User Sign-in (Amazon Cognito)

5. Complete the Security Check that appears. Your new app then appears in the Dashboard.

APP ID: 1166851926714833 § ~* View Analytics

Product Setup

6. Copy the App ID and paste it into the Facebook App ID field in the Mobile Hub console.
At

To enable Facebook Login, you will need to configure a Facebook App
and enter the App ID here.

Facebook App ID

Caneel d"&n:}"\l"

7. In the Facebook Developer portal's left hand navigation list, choose Settings, then choose + Add
Platform.

App ID App Secret

1166851926714933 shssnsns Show
Display Name Namespace

MobileHub-sign-in
App Domains Contact Email

. Com

Privacy Policy URL Terms of Service URL
App llcon Category
Business ~
—
+ Add Platiorm

8. Choose your platform and provide information about your Mobile Hub app that Facebook will use for
integration during credential validation.

For iOS:

a. Add your app's Bundle ID. (ie. com.amazon.YourProjectName). To use the AWS Mobile Hub
sample app project, set your this value to com.amazon.MySampleApp.

159

AWS Mobile Developer Guide
User Sign-in (Amazon Cognito)

i0s Quick Start
Bundle ID iPhone Store ID
com.amazon.MySampleApp
URL Scheme Suffix (Optional) iPad Store ID

Single Sign On

I0S Only: Log In-App Purchase Events Automatically (Recommended)

k SO or newer. Notice: Wt it t
3 Learn More

For Android:
a. Provide your app's Google Play Package Name. (ie. com.yourprojectname). To use the AWS
Mobile Hub sample app project, set this value to com. amazon.mysampleapp.

b. Provide your Class Name that handles deep links (ie. com.yourprojectname.MainActivity).
To use the AWS Mobile Hub sample app project, set your class name to
com.mysampleapp.MainActivity.

Android Quick Start
Google Play Package Name Class Name
com.amazon.mysampleapp com.mysampleapp.MainActivity
Key Hashes
GaDRGNYHVNMSAOSLGQIPQWAPGJS= |

Amazon AppsteredRENOptional)

Single Sign On

Mo

c. Provide your app's Facebook development Key Hashes. This is a value that you generate via a
terminal in your development environment, and is unique to that environment.

To generate a development key for your Android environment on Mac, run the following command
line.

keytool -exportcert -alias androiddebugkey -keystore ~/.android/debug.keystore
openssl shal -binary | openssl base64

160

AWS Mobile Developer Guide
User Sign-in (Amazon Cognito)

To generate a development key for your Android environment on Windows, run the following
command line.

keytool -exportcert -alias androiddebugkey -keystore %HOMEPATH%\.android
\debug.keystore | openssl shal -binary | openssl base64

For more information, choose the Quick Start button in the upper left of the Facebook Developer
Portal Add Platform dialog.

9. In the Facebook Developers portal, choose Save changes, then Use this package name if a dialog
appears saying that Google Play has an issue with your package name.

100nly users with roles assigned in the Facebook portal will be abel to authenticate through your app
while it is in development (not yet published).

To authorize users, in the Facebook Developer portal's left hand navigation list, choose Roles, then
Add Testers. Provide a valid Facebook ID.

Developer roles aliow you to control which people have permission to edit and view your app.
Administrators Add Administrators
Amzn Zucker

Add Testers

To add someone you arent friends with on Facebook, enter their

bk or usamame,
Developers Add Developers

Aman
-

Testers Add Testers

11In the Mobile Hub console, choose Save changes.

For more information about integrating with Facebook Login, see the Facebook Getting Started Guide.

Set Up Google Authentication

To use the following Google service configuration steps to federate Facebook as a user sign-in provider
for AWS services called in your app, try the AWS Mobile HubUser Sign-in feature (p. 348).

With AWS Mobile Hub, you can configure a working Google Sign-In feature for both Android and iOS
apps. To fully integrate Google Sign-In with your app, Mobile Hub needs information that comes from
Google's setup process.

The following pages detail the Google Sign-In requirements ans steps to integrate Google Sign-In for
both iOS and Android apps.

« Create a Google Developers Project and OAuth Web Client ID (p. 162) (required for all apps
regardless of platform)

« Create an OAuth Android Client ID (p. 168) (required for all Android apps)

o Create an OAuth iOS Client ID (p. 173) (required for all iOS apps)

161

https://developers.facebook.com/docs/facebook-login

AWS Mobile Developer Guide
User Sign-in (Amazon Cognito)

Create a Google Developers Project and OAuth Web Client ID

To enable Google Sign-In in your mobile or web app, create a project in the Google Developers Console.
If you are making versions of your mobile app for more than one platform (iOS, Android, or web), create
a single Google project to manage Google authentication for all of the platform instances.

For all platforms, enable the Google+ API for and an OAuth web client ID for your Google project.
Amazon Cognito federates the web client ID to enable your app(s) to use Google authentication to grant
access to your AWS resources.

To create a Google Developers project and OAuth web client ID

1. Go to the Google Developers Console at https://console.developers.google.com.

2. If you have not created a project yet, choose Select a project from the menu bar, and then choose
Create a project....

= Google Developers Console Selectapioject - §f B O @
Getting started Manage all pecjicts
Create a project...

Documentation

Use Google APls Try App Engine (Sandbox
Environment)

] Goegle Cloud Platferm Documaentation

Enable APls, creats credentials, snd track
VOUT UsgE

API Enable and manoge APIs

3. Complete the form that is displayed to create your new project.

4. In the Dashboard for your project, go to the Use Google APIs section and then choose Enable and
manage APIs.

& Home Dashboard
i1 Dashboard

Project: My Project Documentation
= Activity

10 nifty-province-114920 (F306564077196) w

B Google Cloud Pt

B Google Cloud 5S¢

Use Google APls
LJ Google Cloud Tu

eatE credentials, and track

Try App En
Environmel

API Enable and manage APls

Using your fax

5. In the API Manager, in the Social APIs section, choose Google+ API.

162

https://console.developers.google.com

AWS Mobile Developer Guide
User Sign-in (Amazon Cognito)

Google Maps Roads AP
Mose

Social APIs
8"‘ Google+ AP
Blagger API
Googles Pages AP
Google+ Domains AP

Other popular APls

6. In the Overview for Google+ API, choose Enable API.

= Google Developers Console Q

API AFPI Manager Overview

or Overview
Lo Bl Enable API

O Credentials
Google+ API

The Google+ APl enables developers to build on top of the Google+ platform.
Learn more
Try this APl in APIS Explorer

7. A message appears to inform you that the APl is enabled but that it requires credentials before you
can use it. Choose Go to Credentials.

- Disable AP
Goaogle+ API
£\ This AP is enabled, but you can't use it in your project until you create credentials. Go to Credentials

Click “Go to Credentials” to do this now (strongly recommended).

Overview Usage Quotas

8. Your Mobile Hub sample app authenticates users through Amazon Cognito Identity, so you need an
OAuth web application client ID for Amazon Cognito. In Credentials, choose client ID from the links in
the first step.

163

AWS Mobile Developer Guide
User Sign-in (Amazon Cognito)

Credentials

Add credentials to your project

1 Find out what kind of credentials you need

We'll help you set up the correct credentials
If you wish you can skip this step and create an AP key, client |1D, or service account
Which API are you using?
Determines what kind of credentials you need.
Google+ API -

Where will you be calling the APl from?

9. A message appears to inform you that you must set a product name. Choose Configure consent
screen.

Credentials

L al

Create client 1D
To create an OAuth client ID, you must first set a product name on the consent screen Configure consent screen

Application type

Learn more
Learn more
Learn morne

10In OAuth consent screen, enter the name of your app in Product name shown to users. Leave the
remaining fields blank. Then choose Save.

164

AWS Mobile Developer Guide
User Sign-in (Amazon Cognito)

] || g 1 |_| |||

Credentials

Credentials OAuth consent scresn Domain verification

Email address
S @gmail.com

Product name shown 1o users
Mobile Hub Sample App

Homepage URL |

Product logo URL | o]

http:/fwww.example.com/logo.png

This is how your logo will look to end users
Max size: 120x120 px

Privacy policy URL (00000

Terms of service URL 0000

m Cancel

11In Create client ID, choose Web application.

165

The
Users
to the

ID. It w

appl
proje

You n
and g
work

AWS Mobile Developer Guide
User Sign-in (Amazon Cognito)

Google Developers Console

API API Manager Credentials

€ Overview -

O Credentials
Create client ID

Application type
‘Web application
Androbd Learn more
Chrome App Learn more
IS Learn mode
PlaySiation 4
Dther

B oo

12In Name, enter a name for the web client credentials for your app. Leave the Authorized JavaScript
origins and Authorized Redirect URIs fields blank. Mobile Hub configures this information indirectly
through Amazon Cognito Identity integration. Choose Create.

166

AWS Mobile Developer Guide
User Sign-in (Amazon Cognito)

Credentials

=

Create client 1D

Application type

& Web application
Androbd Learn maore
Chrorrie ADp Learn mare
05 Learn mone
PlayStation 4
Other

Hame
Moblle Hub web application client ID

Restrictions
Erter JavaScript ofging, redinect URLE, oF bath

Authorized JovaScript origing
For use with reguests from a bigwser, This is the ofigin URI of the client application. Cannot oomlain & wildeand
(hitpci® example.com) of a path (hitpcemmple.comysubsdir)

Authorized redirect URIs

For use with requests from a web server. This is the path in your application that users are redinected to after they have
authemticaled with Googhe, The path will be appended with the authorization code for access, Must have a profocol,
Cannot contain URL fragrments or relative paths. Cannct be a public IP address.

Cedibe Cancel

13In the OAuth client pop-up, copy and save the value that was generated for your client ID. You will

need the client ID to implement Google Sign-In in your Mobile Hub app. After you copy the client ID,
choose OK.

167

AWS Mobile Developer Guide
User Sign-in (Amazon Cognito)

OAuth client

Here is your client ID

381131997013-t20tfssagulb1532or60kiruvlhdSh0u.apps.googleusercontent.com

Here is your client secret

akmKwLBhXLV-fQpig2s-M5wQ

14Paste the web application client ID value into the Mobile HubGoogle Web App Client ID field for your
project.

A

To get started, you'll need the web app client 1D provided by the Google
developer console, when you enabled the Google+ API.

Google Web App Client 1D

You'll also need the i0S andfor Android client 1D, depending on which
platforms you support.

Google Android Client ID

Google iDS Client ID

Save changes Cancel changes

Create an OAuth Android Client ID

To enable Google Sign-In for your Android app, create an Android OAuth client ID in the Google
Developers Console. This enables your app that can access Google APIs directly and manage token
lifecycle through Amazon Cognito Identity. This Android OAuth client ID is in addition to the Web
application OAuth client ID you created when following steps to Create a Google Developers Project and
OAuth Web Client ID (p. 162). You will provide this client ID to Mobile Hub during the Google Sign-In
configuration.

168

AWS Mobile Developer Guide
User Sign-in (Amazon Cognito)

To create an OAuth Android client ID

1. Go to the Google Developers Console at https://console.developers.google.com.

2. In the Dashboard for your project, go to the Use Google APIs section and then choose Enable and
manage APIs.

Google Developers Console

A Home Dashboard
Ij! Dashboard
Project: My Project Documentation
= Activity
10 nifty-province-114920 (F306564077196) w B Google Cloud Pi

B Google Cloud 5S¢

Use Google APls
B coogle Cloud Tu

Try App En
Environmel

APL Enable and manage APis

s g your T

3. In the API Manager, choose Credentials in the left side menu.

= Google Developers Console Q

API API Manager Credentials

Ao Overview Credentials OaAuth congent screen Domain verification

ial
2= Sl New credentials -

Create credentials 1o access your enabled APIs. Refer to the AP documentation for details

Oauth 2.0 client IDs

MName Creation date ~ Type Client ID
Mobile Hub sample Jan 22, 2016 Web application 382439797
app web client

4. Choose New credentials and then choose OAuth client ID.

169

https://console.developers.google.com

AWS Mobile Developer Guide
User Sign-in (Amazon Cognito)

= Google Developers Console

API API Manager

£ Owverview

o~ Credentials

5. In Create client ID, choose Android.

Credentials

Crgderialy QAR CONERR BCTBER Dramain verifeation

Mew copdeniials - Chelipip

AP iy

kderitifers your prodect wiing & simple AP iy 1o check Quots and Scoess
Fsf APS ke Gosbgle Trariae:

Dush clend 1D

REGUEEIE Uiy CONBENT 20 YOU 0D CON BODHED 1sh UEErs Jath.

For APis ke Googhe Calendas.

S BOtoUn Ky

Embbiad server-o-serag, sp0-lrvel suthentication uting bl aooounts,
For i with Googhe Cloud APiS:

el e chioo e

170

AWS Mobile Developer Guide
User Sign-in (Amazon Cognito)

Google Developers Console

API API Manager Credentials

€ Overview -

o~ Credentials
Create client ID

Application type
‘Web application
Android Learn more
Chrome App Learn more
IS Learn mode
PlaySiation 4
Dther

B oo

6. In Name, enter a name in the format com.amazon.mysampleapp Android client ID.

7. In Signing-certificate fingerprint, enter the SHA-1 fingerprint. For more information about Google's
process for obtaining your SHA-1 fingerprint, see this Google support article.

171

https://support.google.com/cloud/answer/6158849?hl=en#android

AWS Mobile Developer Guide
User Sign-in (Amazon Cognito)

Credentials

=

Create client ID

Application type
Web application

& Android Learn mone
Chrome App Learn more
08 Learn more
PlayStation 4
Other

Hame
£om,amazon mysampleapp Androld client ID

Signing-certificate fingerprini

Android devices send AP requests directly to Google. Google werifies that each request comes from an Android app that
MAaicaes a pac i‘ilﬁ{" namie and SHA= Eign l'";'l:{'l".lr{-\'!lH" :lr';{"rﬂ-'lf'lt theat Yo provice. Use the -’l:l"l:l-'l"'lgl Comemand o et thee
‘.||'r;{"||‘.'-: N LEam mone

keytool -exportcert -alias androlddebughey -keystore path-to-debug-or-production-keystors -
1igt =w

00 00:00: 00:00:00:00:00:00:00:00:00: 0:0:00:00:00:00:00:00:00

Packege name
From your Andraldbanifestoml file

£om, amazon mysampleapp

Cineiibe Cancel

8. Use your your SHA-1 fingerprint to ensure that your apps APK are associated with your Google app.
See instructions at Generate a key and keystore.

9. In Package name, enter the package name in the format com. amazon.YOUR-PACKAGE-NAME.
10Choose Create.

11In the OAuth client pop-up, copy and save the value generated for your Android client ID. You will
need this client ID to implement Google Sign-In in your Mobile Hub app. After you copy the client ID,
choose OK.

172

https://developer.android.com/studio/publish/app-signing.html#generate-key

AWS Mobile Developer Guide
User Sign-in (Amazon Cognito)

QAuth client
Here is your client |D

CEEN R T - S CTEE T _apps_gwglwggrmnl;ent_m

12Paste the Android client ID value into the Mobile HubGoogle Android Client ID field for your project.
A"

To get started, you'll need the web app client 1D provided by the Google
developer console, when you enabled the Google+ API.

Google Web App Client 1D

You'll also need the i0S andfor Android client 1D, depending on which
platforms you support.

Google Android Client ID

Google i0DS Client 1D

Save changes Cancel changes

Create an OAuth iOS Client ID

To enable Google Sign-In for your iOS app, create an iOS OAuth client ID in the Google Developers
Console. This enables your app to access Google APIs directly and to manage token lifecycle through
Amazon Cognito Identity. This iOS OAuth client ID is in addition to the web application OAuth client ID
that you created when following steps to Create a Google Developers Project and OAuth Web Client
ID (p. 162). You will provide this client ID to Mobile Hub during the Google Sign-In configuration.

173

AWS Mobile Developer Guide
User Sign-in (Amazon Cognito)

To create an OAuth iOS client ID

1. Go to the Google Developers Console at https://console.developers.google.com.

2. In the Dashboard for your project, go to the Use Google APIs section and then choose Enable and
manage APIs.

Google Developers Console

A Home Dashboard
Ij! Dashboard
Project: My Project Documentation
= Activity
10 nifty-province-114920 (F306564077196) w B Google Cloud Pi

B Google Cloud 5S¢

Use Google APls
B coogle Cloud Tu

Try App En
Environmel

APL Enable and manage APis

s g your T

3. In the API Manager, choose Credentials in the left side menu.

= Google Developers Console Q

API API Manager Credentials

Ao Overview Credentials OaAuth congent screen Domain verification

ial
2= Sl New credentials -

Create credentials 1o access your enabled APIs. Refer to the AP documentation for details

Oauth 2.0 client IDs

MName Creation date ~ Type Client ID
Mobile Hub sample Jan 22, 2016 Web application 382439797
app web client

4. Choose New Credentials and then choose OAuth client ID.

174

https://console.developers.google.com

AWS Mobile Developer Guide
User Sign-in (Amazon Cognito)

Google Developers Console

API API Manager

£ Owverview

o~ Credentials

5. In Create client ID, choose iOS.

Credentials

Crgderialy QAR CONERR BCTBER Dramain verifeation

Mew copdeniials - Chelipip

AP oy

idenilifhes your project uging & simple AP key 10 check quots and sCoess
For AP like Googhe Trarslsle

Dush client 1D

REQUETiE bt conBent £0 yOUF B CON BOOBEE U Ut Jalh.

Fasf APs ke Googhe Cabendas.

Service Botoun key

Embbiad server-o-serag, sp0-lrvel suthentication uting bl aooounts,
For i with Googhe Cloud APiS:

el e chioo e

175

AWS Mobile Developer Guide
User Sign-in (Amazon Cognito)

Google Developers Console

API API Manager Credentials

€ Overview -

o~ Credentials
Create client ID

Application type
‘Web application
Android Learn more
Chrome App Learn more
IS Learn mode
PlaySiation 4
Dther

e

6. In Name, enter a name in the format com.amazon.YOUR-APP-NAME YOUR-iOS-CLIENT-1ID.
7. In Bundle ID, enter the bundle name in the format com.amazon.YOUR-APP-NAME.

176

AWS Mobile Developer Guide
User Sign-in (Amazon Cognito)

Credentials

=

Create client 1D

Application typo
Web applicakion
Android Learm mang
Chrome App Learm mone
& 05 Learmn mana
PlaySiation 4

Team 10

cae

8. Choose Create.

9. In the OAuth client pop-up, copy and save the value that was generated for your iOS client ID. You
will need these values to implement Google Sign-In in your Mobile Hub app. After you copy the client
ID, choose OK.

177

AWS Mobile Developer Guide
User Sign-in (Amazon Cognito)

QAuth client
Here is your client |D

CEEN R T - S CTEE T _apps_gwglwggrmnl;ent_m

10Paste the iOS client ID value into the Mobile HubGoogle iOS Client ID field for your project.
A"

To get started, you'll need the web app client 1D provided by the Google
developer console, when you enabled the Google+ API.

Google Web App Client 1D

You'll also need the i0S andfor Android client 1D, depending on which
platforms you support.

Google Android Client ID

Google i0DS Client 1D

Save changes Cancel changes

Verify All Platform Client IDs

If your app supports both Android and iOS platforms, then your app project in the Google Developers
Console will now have three client IDs: one for web application, one for Android, and one for iOS. You
can verify that you have all of the credentials for all of the platforms by looking at the Credentials panel
in the APl Manager for your app, as shown in the following.

178

AWS Mobile Developer Guide
User Sign-in (Amazon Cognito)

Credentials

Chuth 2.0 cliont IDs
Biarfg e T Clprd 1

SO AMATSA My LAM {0

COM AMATSA My LAm s
Andrpad clent 1D

Mokido Hubr samgse app
sy il

Setting Up Custom Authentication

You can use your own authentication system, rather than identity federation provided by Facebook or
Google, to register and authenticate your customers. The use of developer-authenticated identities
involves interaction between the end-user device, your authentication back end, and Amazon Cognito.
For more information, see the following blog entries:

» Understanding Amazon Cognito Authentication
« Understanding Amazon Cognito Authentication Part 2: Developer-Authenticated Identities

To use your own authentication system, you must implement an identity provider by extending the
AWSAbstractCognitoIdentityProvider class and associating your provider with an Amazon
Cognito identity pool. For more information, see Developer Authenticated Identities in the Amazon
Cognito Developer Guide.

Customize the SDK Sign-In Ul

By default, the SDK presents sign-in Ul for each sign in provider you enable in your Mobile Hub project
(Email and Password, Facebook, Google) with a default look and feel. It knows which provider(s) you
chose by reading the awsconfiguration. json file you downloaded.

To override the defaults, and modify the behavior, look, and feel of the sign-in Ul, create an
AuthUIConfiguration object and set the appropriate properties.

Android - Java
Create and configure an AuthUIConfiguration object and set its properties.

« To present the Email and Password user SignInUI, set userPools to true.

« To present Facebook or Google user SignInUI, add signInButton(FacebookButton.class)
or signInButton(GoogleButton.class).

« To change the logo, use the logoResId.
« To change the background color, use backgroundColor.
« To cancel the sign-in flow, set .canCancel(true).

« To change the font in the sign-in views, use the fontFamily method and pass in the string that
represents a font family.

o To draw the backgroundColor full screen, use fullScreenBackgroundColor.

179

http://mobile.awsblog.com/post/Tx2UQN4KWI6GDJL/Understanding-Amazon-Cognito-Authentication
http://mobile.awsblog.com/post/Tx2FL1QAPDE0UAH/Understanding-Amazon-Cognito-Authentication-Part-2-Developer-Authenticated-Ident
http://docs.aws.amazon.com/cognito/devguide/identity/developer-authenticated-identities/

AWS Mobile Developer Guide
User Sign-in (Amazon Cognito)

import android.app.Activity;
import android.graphics.Color;
import android.os.Bundle;

import com.amazonaws.mobile.auth.facebook.FacebookButton;
import com.amazonaws.mobile.auth.google.GoogleButton;
import com.amazonaws.mobile.auth.ui.AuthUIConfiguration;
import com.amazonaws.mobile.auth.ui.SignInUI;

import com.amazonaws.mobile.client.AWSMobileClient;
import com.amazonaws.mobile.client.AWSStartupHandler;
import com.amazonaws.mobile.client.AWSStartupResult;

public class YourMainActivity extends Activity {
@Override
protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);

AWSMobileClient.getInstance().initialize(this, new AWSStartupHandler() {
@Override
public void onComplete(final AWSStartupResult awsStartupResult) {
AuthUIConfiguration config =
new AuthUIConfiguration.Builder()
.userPools(true) // true? show the Email and Password UI
.signInButton(FacebookButton.class) // Show Facebook button
.signInButton(GoogleButton.class) // Show Google button
.logoResId(R.drawable.mylogo) // Change the logo
.backgroundColor(Color.BLUE) // Change the backgroundColor
.isBackgroundColorFullScreen(true) // Full screen
backgroundColor the backgroundColor full screenff
.fontFamily("sans-serif-light") // Apply sans-serif-light as
the global font
.canCancel(true)
.build();
SignInUI signinUI = (SignInUI)
AWSMobileClient.getInstance().getClient(YourMainActivity.this, SignInUI.class);
signinUI.login(YourMainActivity.this,
YourNextActivity.class).authUIConfiguration(config).execute();
}

}) .execute();

Android - Kotlin
Create and configure an AuthUIConfiguration object and set its properties.

« To present the Email and Password user SignInUI, set userPools to true.

« To present Facebook or Google user SignInUI, add signInButton(FacebookButton.class)
or signInButton(GoogleButton.class).

« To change the logo, use the 1logoResId.
« To change the background color, use backgroundColor.
« To cancel the sign-in flow, set .canCancel(true).

« To change the font in the sign-in views, use the fontFamily method and pass in the string that
represents a font family.

« To draw the backgroundColor full screen, use fullScreenBackgroundColor

import android.app.Activity;
import android.graphics.Color;

180

AWS Mobile Developer Guide
User Sign-in (Amazon Cognito)

import android.os.Bundle;

import com.amazonaws.mobile.auth.facebook.FacebookButton;
import com.amazonaws.mobile.auth.google.GoogleButton;
import com.amazonaws.mobile.auth.ui.AuthUIConfiguration;
import com.amazonaws.mobile.auth.ui.SignInUI;

import com.amazonaws.mobile.client.AWSMobileClient;
import com.amazonaws.mobile.client.AWSStartupHandler;
import com.amazonaws.mobile.client.AWSStartupResult;

class MainActivity : AppCompatActivity() {
override fun onCreate(savedInstanceState : Bundle?) {
super.onCreate()
AWSMobileClient.getInstance().initialize(this) {
val config = AuthUIConfiguration.Builder()
.userPools(true) // show the Email and Password UI
.signInButton(FacebookButton.class) // Show Facebook
.signInButton(GoogleButton.class) // Show Google
.logoResId(R.drawable.mylogo) // Change the logo
.backgroundColor(Color.BLUE) // Change the background color
.isBackgroundColorFullScreen(true) // Full screen background color
.fontFamily("sans-serif-light") // font
.canCancel(true) // Add a cancel/back button
.build()
val signInUI = AWSMobileClient.getInstance().getClient(this@eMainActivity,
SignInUI::class.java) as SignInUI
signInUI.login(this@MainActivity,
NextActivity::class.java).authUIConfiguration(config).execute()
}.execute()

}

iOS - Swift
Create and configure an AWSAuthUIConfiguration object and set its properties.
Create and configure an AuthUIConfiguration object.

« To present the Email and Password user SignInUI, set et enableUserPoolsUI to true.

« To present Facebook or Google user SignInUI, add .addSignInButtonView(class:
AWSFacebookSignInButton.self) or .addSignInButtonView(class:
AWSFacebookSignInButton.self).

« To change the logo, use logoImage.
« To change the background color, use backgroundColor.
« To cancel the sign-in flow, use canCancel.

« To change the font in the sign-in views, use the font property and pass in the UIFont object that
represents a font family.

« To draw the backgroundColor full screen, use fullScreenBackgroundColor.

import UIKit

import AWSAuthUI

import AWSMobileClient
import AWSUserPoolsSignIn
import AWSFacebookSignIn
import AWSGoogleSignIn

class SampleViewController: UIViewController {
override func viewDidLoad() {
super.viewDidLoad()

181

AWS Mobile Developer Guide
User File Storage (Amazon S3)

if !AWSSignInManager.sharedInstance().isLoggedIn {
presentAuthUIViewController()
}
}

func presentAuthUIViewController() {
let config = AWSAuthUIConfiguration()
config.enableUserPoolsUI = true
config.addSignInButtonView(class: AWSFacebookSignInButton.self)
config.addSignInButtonView(class: AWSGoogleSignInButton.self)
config.backgroundColor = UIColor.blue
config.font = UIFont (name: "Helvetica Neue", size: 20)
config.isBackgroundColorFullScreen = true
config.canCancel = true

AWSAuthUIViewController.presentViewController(
with: self.navigationController!,
configuration: config, completionHandler: { (provider: AWSSignInProvider,
error: Error?) in

if error == nil {
// SignIn succeeded.
} else {
// end user faced error while loggin in, take any required action
here.
}
D)
}
}

How To: File Storage with Amazon S3

Just Getting Started? Use streamlined steps (p. 66) to install the SDK
and integrate Amazon S3.

Or, use the contents of this page if your app will integrate existing AWS services.

This section provides information on the steps for achieving specific tasks for integrating your Amazon
S3 into your Android and iOS apps.

Topics
« How to Integrate Your Existing Bucket (p. 182)
 Transfer Files and Data Using TransferUtility and Amazon S3 (p. 194)
o Amazon S3 Pre-Signed URLs: For Background Transfer (p. 219)
o Amazon S3 Server-Side Encryption Support in iOS (p. 222)
« i0S: Amazon S3 TransferManager for iOS (p. 223)

How to Integrate Your Existing Bucket

Just Getting Started? Use streamlined steps (p. 66) to install the SDK
and integrate Amazon S3.

Or, use the contents of this page if your app will integrate existing AWS services.

182

AWS Mobile Developer Guide
User File Storage (Amazon S3)

The following steps include:

« Set up short-lived credentials for accessing your AWS resources using a Cognito Identity Pool.
« Create an AWS Mobile configuration file that ties your app code to your bucket.

Set Up Your Backend

If you already have a Cognito Identity Pool and have its unauthenticated IAM role set up with read/write
permissions on the S3 bucket, you can skip to Get Your Bucket Name and ID (p. 183).

Create or Import the Amazon Cognito Identity Pool

1. Go to Amazon Cognito Console and choose Manage Federated Identities.
2. Choose Create new Identity pool on the top left of the console.

3. Type a name for the Identity pool, select Enable access to unauthenticated identities under the
Unauthenticated Identities section, and then choose Create pool on the bottom right.

4. Expand the View Details section to see the two roles that are to be created to enable
access to your bucket. Copy and keep the Unauthenticated role name, in the form of
Cognito_<IdentityPoolName>Unauth_Role, for use in a following configuration step. Choose
Allow on the bottom right.

5. In the code snippet labeled Get AWSCredentials displayed by the console, copy the Identity Pool ID
and the Region for use in a following configuration step.

Set up the required Amazon IAM permissions

1. Go to Amazon IAM Console and choose Roles.
2. Choose the unauthenticated role whose name you copied in a previous step.

3. Choose Attach Policy, select the AmazonS3FullAccess policy, and then choose Attach Policy to
attach it to the role.

Note The AmazonS3FullAccess policy will grant
users in the identity pool full access to all
buckets and operations in Amazon S3.1n a
real app, you should restrict users to only have
access to the specific resources they need. For
more information, see Amazon S3 Security
Considerations.

Get Your Bucket Name and ID

1. Go to Amazon S3 Console and select the bucket you want to integrate.

2. Copy and keep the bucket name value from the breadcrumb at the top of the console, for use in a
following step.

3. Copy and keep the bucket's region, for use in a following step.
Connect to Your Backend

Create the awsconfiguration.json file

1. Create a file with name awsconfiguration. json with the following contents:

183

http://docs.aws.amazon.com/cognito/latest/developerguide/identity-pools.html
https://console.aws.amazon.com/cognito
https://console.aws.amazon.com/iam/home
https://console.aws.amazon.com/s3/home

AWS Mobile Developer Guide
User File Storage (Amazon S3)

{
"Version": "1.0",
"CredentialsProvider": {
"CognitoIdentity": {
"Default": {
"PoolId": "COGNITO-IDENTITY-POOL-ID",
"Region": "COGNITO-IDENTITY-POOL-REGION"
}
}
Iy
"IdentityManager" : {
"Default" : { }
Iy
"S3TransferUtility": {
"Default": {
"Bucket": "S3-BUCKET-NAME",
"Region": "S3-REGION"
}
}
}

2. Make the following changes to the configuration file.
+ Replace the COGNITO-IDENTITY-POOL-ID with the identity pool ID.

« Replace the COGNITO-IDENTITY-POOL-REGION with the region the identity pool was created in.

« Replace the S3-BUCKET-NAME with the name of your bucket.
» Replace the s3-REGION with the region your bucket was created in.

Add the awsconfiguration.json file to your app

Android - Java

In the Android Studio Project Navigator, right-click your app's res folder, and then choose New >

Directory. Type raw as the directory name and then choose OK.

@ Android Studio File Edit View Navigate Code Analyze Refactor Build Run Tools VCS Window

L] L] « MyApplication [~/Downloads/MyApplication] - .../app/src/main/java/com/dzmedia/android/m
kel P RE 4 O & % app m L
. MyApplication . app src main res
§ i Android - € == B |- o activity_mainxml € MainActivity java
g app package com,dzmedia.android.myapplication;
] manifests
i java Y« Kotlin File/Class
res Sample Data Directory vity {
@ 1 1 3) !
% 3 Gradle Scripts Link C++ Project with Gradle d File
5.;-. Cut 98 X = Scratch File DN lastate) {
& -
N Copy %C | Directory
% - b/ RIS e Vector Asset
a I Paste £
4 o Gradle Kotlin DSL Build Script
_ Find in Path... {+%F R

Drag the awsconfiguration. json you created into the res/raw folder. Android gives a resource

ID to any arbitrary file placed in this folder, making it easy to reference in the app.
Android - Kotlin

In the Android Studio Project Navigator, right-click your app's res folder, and then choose New >

Directory. Type raw as the directory name and then choose OK.

184

AWS Mobile Developer Guide
User File Storage (Amazon S3)

® Android Studio File Edit View Navigate Code Analyze Refactor Build Run Tools VCS Window

L] L] « MyApplication [~/Downloads/MyApplication] - .../app/src/main/java/com/dzmedia/android/m
Il TRE o W & Lopp -] L
. MyApplication = _app sre main res
3 i Android - € == B |- g activity_mainxmi € MainActivity java
g app package com.dzmedia.android.myapplication;
= manifests 2
i java TN, (- Kotlin File/Class
res Sample Data Directory vity {
o 1 o O | h
% 3 Gradle Scripts Link C++ Project with Gradle 2 File
] Cut 9¢x | & Scratch File 038N estate) {
& Copy %®C Directory
B EUDY Pa::h) h YE:C Image Asset
% _ opy Relative Pat c N
a [¥ Paste &V
< Gradle Kotlin DSL Build Script
9 Find in Path... 0 %F e e

Drag the awsconfiguration. json you created into the res/raw folder. Android gives a resource
ID to any arbitrary file placed in this folder, making it easy to reference in the app.

iOS - Swift
Drag the awsconfiguration. json into the Xcode Project Navigator folder containing
Info.plist. Choose Copy items and Create groups in the options dialog.

Add the SDK to your App

Android - Java
Set up AWS Mobile SDK components as follows:

1. Add the following to app/build.gradle:

dependencies {
implementation ('com.amazonaws:aws-android-sdk-mobile-client:2.6.+@aar"')
{ transitive = true }
implementation 'com.amazonaws:aws-android-sdk-s3:2.6.+"'
implementation 'com.amazonaws:aws-android-sdk-cognito:2.6.+"'

Perform a Gradle Sync to download the AWS Mobile SDK components into your app
2. Add the following to AndroidManifest.xml:

<uses-permission android:name="android.permission.WRITE_EXTERNAL_STORAGE" />
<application ... >

D e

<service
android:name="com.amazonaws.mobileconnectors.s3.transferutility.TransferService"
android:enabled="true" />

<l- . . . =>

</application>

3. For each Activity where you make calls to perform user file storage operations, import the
following packages.

185

AWS Mobile Developer Guide
User File Storage (Amazon S3)

import com.amazonaws.mobile.config.AWSConfiguration;
import com.amazonaws.mobileconnectors.s3.transferutility.*;

4. Add the following code to the onCreate method of your main or startup activity. This will
establish a connection with AWS Mobile. AWSMobileClient is a singleton that will be an
interface for your AWS services.

import com.amazonaws.mobile.client.AWSMobileClient;

public class YourMainActivity extends Activity {
@Override
protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);

AWSMobileClient.getInstance().initialize(this).execute();

Android - Kotlin

Set up AWS Mobile SDK components as follows:

1. Add the following to app/build.gradle

dependencies {
implementation ('com.amazonaws:aws-android-sdk-mobile-client:2.6.+@aar"')
{ transitive = true }
implementation 'com.amazonaws:aws-android-sdk-s3:2.6.+"'
implementation 'com.amazonaws:aws-android-sdk-cognito:2.6.+"'

Perform a Gradle Sync to download the AWS Mobile SDK components into your app
2. Add the following to AndroidManifest.xml:

<uses-permission android:name="android.permission.WRITE_EXTERNAL_STORAGE" />
<application ... >

<l- . L0 =

<service
android:name="com.amazonaws.mobileconnectors.s3.transferutility.TransferService"
android:enabled="true" />

<l- . . . ->

</application>

3. For each Activity where you make calls to perform user file storage operations, import the
following packages.

import com.amazonaws.mobile.config.AWSConfiguration;
import com.amazonaws.mobileconnectors.s3.transferutility.*;

4, Add the following code to the onCreate method of your main or startup activity. This will
establish a connection with AWS Mobile. AWSMobileClient is a singleton that will be an
interface for your AWS services.

186

AWS Mobile Developer Guide
User File Storage (Amazon S3)

import com.amazonaws.mobile.client.AWSMobileClient;

class MainActivity : Activity() {
override fun onCreate(savedInstanceState: Bundle?) {
super.onCreate(savedInstanceState)
AWSMobileClient.getInstance().initialize(this).execute()
}
}

iOS - Swift
Set up AWS Mobile SDK components as follows:

1. Add the following to Podfile that you configure to install the AWS Mobile SDK:

platform :ios, '9.0'

target :'YOUR-APP-NAME' do
use_frameworks!

pod 'AWSMobileClient', '~> 2.6.13' # For AWSMobileClient
pod 'AWSS3', '~> 2.6.13" # For file transfers
pod 'AWSCognito', '~> 2.6.13' # For data sync

other pods

end

Run pod install --repo-update before you continue.

If you encounter an error message that begins"[!] Failed to connect to GitHub to
update the CocoaPods/Specs . . ." andyour internet connectivity is working, you may
need to update openssl and Ruby.

2. Add the following imports to the classes that perform user file storage operations:

import AWSCore
import AWSS3

3. Add the following code to your AppDelegate to establish a run-time connection with AWS Mobile.

import UIKit
import AWSCore
import AWSMobileClient

@UIApplicationMain
class AppDelegate: UIResponder, UIApplicationDelegate {

func application(_ application: UIApplication, didFinishLaunchingWithOptions
launchOptions: [UIApplicationLaunchOptionsKey: Any]?) -> Bool {
//Instantiate AWSMobileClient to establish AWS user credentials
return AWSMobileClient.sharedInstance().interceptApplication(application,
didFinishLaunchingWithOptions: launchOptions)

}

187

https://stackoverflow.com/questions/38993527/cocoapods-failed-to-connect-to-github-to-update-the-cocoapods-specs-specs-repo/48962041#48962041

AWS Mobile Developer Guide
User File Storage (Amazon S3)

Implement Storage Operations

Once your backend is setup and connected to your app, use the following steps to upload and download
a file using the SDK's transfer utility.

Upload a File
Android - Java

To upload a file to an Amazon S3 bucket, use AWSMobileClient to get the AWSConfiguration
and AWSCredentialsProvider, then create the TransferUtility object. AWSMobileClient
expects an activity context for resuming an authenticated session and creating the credentials
provider.

The following example shows using the TransferUtility “in the context of an
Activity. If you are creating :code: TransferUtility from an application context,
you can construct the AWSCredentialsProvider and pass it into TransferUtility to usein
forming the AWSConfiguration object.. The TransferUtility will check the size of file being
uploaded and will automatically switch over to using multi-part uploads if the file size exceeds 5 MB.

import android.app.Activity;
import android.util.Log;

import com.amazonaws.mobile.client.AWSMobileClient;

import com.amazonaws.mobileconnectors.s3.transferutility.TransferUtility;
import com.amazonaws.mobileconnectors.s3.transferutility.TransferState;
import com.amazonaws.mobileconnectors.s3.transferutility.TransferObserver;
import com.amazonaws.mobileconnectors.s3.transferutility.TransferListener;
import com.amazonaws.services.s3.AmazonS3Client;

import java.io.File;
public class YourActivity extends Activity {

@Override

protected void onCreate(Bundle savedInstanceState) {
AWSMobileClient.getInstance().initialize(this).execute();
uploadWithTransferUtility();

}

private void uploadWithTransferUtility() {

TransferUtility transferUtility =
TransferUtility.builder()
.context(getApplicationContext())
.awsConfiguration(AWSMobileClient.getInstance().getConfiguration())
.s3Client(new
AmazonS3Client(AWSMobileClient.getInstance().getCredentialsProvider()))
.build();

TransferObserver uploadObserver =
transferUtility.upload(
"s3Folder/s3Key.txt",
new File("/path/to/file/localFile.txt"));

// Attach a listener to the observer to get state update and progress
notifications
uploadObserver.setTransferListener(new TransferListener() {

@Override
public void onStateChanged(int id, TransferState state) {
if (TransferState.COMPLETED == state) {

// Handle a completed upload.

188

AWS Mobile Developer Guide
User File Storage (Amazon S3)

}

@Override

public void onProgressChanged(int id, long bytesCurrent, long bytesTotal) {
float percentDonef = ((float) bytesCurrent / (float) bytesTotal) * 100;
int percentDone = (int)percentDonef;

Log.d("YourActivity", "ID:" + id + " bytesCurrent: " + bytesCurrent
+ " bytesTotal: " + bytesTotal + " " + percentDone + "%");

}

@Override
public void onError(int id, Exception ex) {
// Handle errors

}
1)

// If you prefer to poll for the data, instead of attaching a
// listener, check for the state and progress in the observer.
if (TransferState.COMPLETED == uploadObserver.getState()) {

// Handle a completed upload.

}

Log.d("YourActivity", "Bytes Transferrred: " +
uploadObserver.getBytesTransferred());

Log.d("YourActivity", "Bytes Total: " + uploadObserver.getBytesTotal());

}

Android - Kotlin

To upload a file to an Amazon S3 bucket, use AWSMobileClient to get the AWSConfiguration
and AWSCredentialsProvider, then create the TransferUtility object. AWSMobileClient
expects an activity context for resuming an authenticated session and creating the credentials
provider.

The following example shows using the TransferUtility “in the context of an
Activity. If you are creating :code: TransferUtility from an application context,
you can construct the AWSCredentialsProvider and pass it into TransferUtility to usein
forming the AWSConfiguration object.. The TransferUtility will check the size of file being
uploaded and will automatically switch over to using multi-part uploads if the file size exceeds 5 MB.

import android.app.Activity;
import android.util.Log;

import com.amazonaws.mobile.client.AWSMobileClient;

import com.amazonaws.mobileconnectors.s3.transferutility.TransferUtility;
import com.amazonaws.mobileconnectors.s3.transferutility.TransferState;
import com.amazonaws.mobileconnectors.s3.transferutility.TransferObserver;
import com.amazonaws.mobileconnectors.s3.transferutility.TransferListener;
import com.amazonaws.services.s3.AmazonS3Client;

import java.io.File;

class MainActivity : Activity() {
override fun onCreate(savedInstanceState: Bundle?) {
super.onCreate()
AWSMobileClient.getInstance().initialize(this).execute()
uploadWithTransferUtility(
"s3Folder/s3Key.txt"
File("/path/to/file/localfile.txt")

189

AWS Mobile Developer Guide
User File Storage (Amazon S3)

}

private fun uploadWithTransferUtility(remote: String, local: File) {
val txUtil = TransferUtility.builder()
.context(getApplicationContext)
.awsConfiguration(AWSMobileClient.getInstance().configuration)

.s3Client(AmazonS3Client(AWSMobileClient.getInstance().credentialsProvider))
.build()

val txObserver = txUtil.upload(remote, local)
txObserver.transferListener = object : TransferListener() {
override fun onStateChanged(id: Int, state: TransferState) {
if (state == TransferState.COMPLETED) {
// Handle a completed upload
}
}

override fun onProgressChanged(id: Int, current: Long, total: Long) {
val done = (((current / total) * 100.0) as Float) as Int
Log.d(TAG, "ID: $id, percent done = $done")

}

override fun onError(id: Int, ex: Exception) {
// Handle errors
}
}

// If you prefer to poll for the data, instead of attaching a
// listener, check for the state and progress in the observer.
if (txObserver.state == TransferState.COMPLETED) {

// Handle a completed upload.

}

iOS - Swift

The following example shows how to upload a file to an Amazon S3 bucket.

func uploadData() {
let data: Data = Data() // Data to be uploaded

let expression = AWSS3TransferUtilityUploadExpression()
expression.progressBlock = {(task, progress) in
DispatchQueue.main.async(execute: {
// Do something e.g. Update a progress bar.
D)
}

var completionHandler: AWSS3TransferUtilityUploadCompletionHandlerBlock?
completionHandler = { (task, error) -> Void in
DispatchQueue.main.async(execute: {
// Do something e.g. Alert a user for transfer completion.
// On failed uploads, “error~ contains the error object.

»
¥

let transferUtility = AWSS3TransferUtility.default()

transferUtility.uploadData(data,
bucket: "YourBucket",
key: "YourFileName",
contentType: "text/plain",

190

AWS Mobile Developer Guide
User File Storage (Amazon S3)

expression: expression,
completionHandler: completionHandler).continueWith {
(task) -> AnyObject! in
if let error = task.error {
print("Error: \(error.localizedDescription)")

}
if let _ = task.result {

// Do something with uploadTask.
}

return nil;

Download a File
Android - Java

To download a file from an Amazon S3 bucket, use AWSMobileClient to get the
AWSConfiguration and AWSCredentialsProvider to create the TransferUtility object.
AWSMobileClient expects an activity context for resuming an authenticated session and creating
the

<problematic>:cdoe: ' AWSCredentialsProvider " </problematic>

The following example shows using the TransferUtility in the context of an Activity.
If you are creating TransferUtility from an application context, you can construct the
AWSCredentialsProvider and pass it into TransferUtility to use in forming the
AWSConfiguration object.

import android.app.Activity;
import android.util.Log;

import com.amazonaws.mobile.client.AWSMobileClient;

import com.amazonaws.mobileconnectors.s3.transferutility.TransferUtility;
import com.amazonaws.mobileconnectors.s3.transferutility.TransferState;
import com.amazonaws.mobileconnectors.s3.transferutility.TransferObserver;
import com.amazonaws.mobileconnectors.s3.transferutility.TransferListener;
import com.amazonaws.services.s3.AmazonS3Client;

import java.io.File;
public class YourActivity extends Activity {

public void dowloadData() {
AWSMobileClient.getInstance().initialize(this, new AWSStartupHandler() {
@Override
public void onComplete() {
downloadWithTransferUtility();
}
}) .execute();

}
public void downloadWithTransferUtility() {

TransferUtility transferUtility =
TransferUtility.builder()
.context(getApplicationContext())
.awsConfiguration(AWSMobileClient.getInstance().getConfiguration())
.s3Client(new
AmazonS3Client(AWSMobileClient.getInstance().getCredentialsProvider()))
.build();

191

AWS Mobile Developer Guide
User File Storage (Amazon S3)

TransferObserver downloadObserver =
transferUtility.download(
"s3Folder/s3Key.txt",
new File("/path/to/file/localFile.txt"));

// Attach a listener to the observer to get state update and progress
notifications
downloadObserver.setTransferListener(new TransferListener() {

@Override
public void onStateChanged(int id, TransferState state) {
if (TransferState.COMPLETED == state) {
// Handle a completed upload.
}
}
@Override

public void onProgressChanged(int id, long bytesCurrent, long bytesTotal) {
float percentDonef = ((float)bytesCurrent/(float)bytesTotal) * 100;
int percentDone = (int)percentDonef;

Log.d("MainActivity", " ID:" + id + " bytesCurrent: " +
bytesCurrent + " bytesTotal: " + bytesTotal + " " + percentDone + "%");
}
@Override

public void onError(int id, Exception ex) {
// Handle errors

}
1)

// If you prefer to poll for the data, instead of attaching a

// listener, check for the state and progress in the observer.

if (TransferState.COMPLETED == downloadObserver.getState()) {
// Handle a completed upload.

}

Log.d("YourActivity", "Bytes Transferrred: " +
downloadObserver.getBytesTransferred());

Log.d("YourActivity", "Bytes Total: " + downloadObserver.getBytesTotal());

}

Android - Kotlin

To download a file from an Amazon S3 bucket, use AWSMobileClient to get the
AwWSConfiguration and AWSCredentialsProvider to create the TransferUtility object.
AWSMobileClient expects an activity context for resuming an authenticated session and creating
the

<problematic>:cdoe: ' AWSCredentialsProvider " </problematic>

The following example shows using the TransferUtility in the context of an Activity.
If you are creating TransferUtility from an application context, you can construct the
AWSCredentialsProvider and passitinto TransferUtility to use in forming the
AwWSConfiguration object.

import android.app.Activity;
import android.util.Log;

import com.amazonaws.mobile.client.AWSMobileClient;
import com.amazonaws.mobileconnectors.s3.transferutility.TransferUtility;

192

AWS Mobile Developer Guide
User File Storage (Amazon S3)

import com.amazonaws.mobileconnectors.s3.transferutility.TransferState;
import com.amazonaws.mobileconnectors.s3.transferutility.TransferObserver;
import com.amazonaws.mobileconnectors.s3.transferutility.TransferListener;
import com.amazonaws.services.s3.AmazonS3Client;

import java.io.File;

class MainActivity : Activity() {
override fun onCreate(savedInstanceState: Bundle?) {
super.onCreate()
AWSMobileClient.getInstance().initialize(this).execute()
downloadWithTransferUtility(
"s3Folder/s3Key.txt"
File("/path/to/file/localfile.txt")

}

private fun downloadWithTransferUtility(remote: String, local: File) {
val txUtil = TransferUtility.builder()
.context(getApplicationContext)
.awsConfiguration(AWSMobileClient.getInstance().configuration)

.s3Client(AmazonS3Client(AWSMobileClient.getInstance().credentialsProvider))
.build()

val txObserver = txUtil.download(remote, local)
txObserver.transferListener = object : TransferListener() {
override fun onStateChanged(id: Int, state: TransferState) {
if (state == TransferState.COMPLETED) {
// Handle a completed upload
}
}

override fun onProgressChanged(id: Int, current: Long, total: Long) {
val done = (((current / total) * 100.0) as Float) as Int
Log.d(TAG, "ID: $id, percent done = $done")

}

override fun onError(id: Int, ex: Exception) {
// Handle errors
}
}

// If you prefer to poll for the data, instead of attaching a
// listener, check for the state and progress in the observer.
if (txObserver.state == TransferState.COMPLETED) {

// Handle a completed upload.

}

iOS - Swift

The following example shows how to download a file from an Amazon S3 bucket.

func downloadData() {
let expression = AWSS3TransferUtilityDownloadExpression()
expression.progressBlock = {(task, progress) in DispatchQueue.main.async(execute: {
// Do something e.g. Update a progress bar.
D)
}

var completionHandler: AWSS3TransferUtilityDownloadCompletionHandlerBlock?
completionHandler = { (task, URL, data, error) -> Void in
DispatchQueue.main.async(execute: {

193

AWS Mobile Developer Guide
User File Storage (Amazon S3)

// Do something e.g. Alert a user for transfer completion.
// On failed downloads, ~“error~ contains the error object.
D)

}

let transferUtility = AWSS3TransferUtility.default()
transferUtility.downloadData(

fromBucket: "YourBucket",

key: "YourFileName",

expression: expression,

completionHandler: completionHandler

).continueWith {

(task) -> AnyObject! in if let error = task.error {
print("Error: \(error.localizedDescription)")

}

if let _ = task.result {
// Do something with downloadTask.

}

return nil;

Next Steps

« For further information about TransferUtility capabilities, see Transfer Files and Data Using
TransferUtility and Amazon S3 (p. 194).

« For sample apps that demonstrate TransferUtility capabilities, see Android S3 TransferUtility Sample
and iOS S3 TransferUtility Sample.

Transfer Files and Data Using TransferUtility and Amazon S3

Just Getting Started? Use streamlined steps (p. 66) to install the SDK
and integrate Amazon S3.

Or, use the contents of this page if your app will integrate existing AWS services.

This page explains how to implement upload and download functionality and a number of additional
storage use cases.

The examples on this page assume you have added the the AWS Mobile SDK to your mobile app. To
create a new cloud storage backend for your app, see Add User File Storage (p. 66).

Best practice If you use the transfer utility multipart
upload feature, take advantage of
automatic cleanup features by seting up the
AbortincompleteMultipartUpload action in your
Amazon S3 bucket life cycle configuration.

Upload a File

Android - Java

The following example shows how to upload a file to an Amazon S3 bucket.

194

https://github.com/awslabs/aws-sdk-android-samples/tree/master/S3TransferUtilitySample
https://github.com/awslabs/aws-sdk-ios-samples/tree/master/S3TransferUtility-Sample
http://docs.aws.amazon.com/AmazonS3/latest/dev/intro-lifecycle-rules.html

AWS Mobile Developer Guide
User File Storage (Amazon S3)

Use AWSMobileClient to get the AWSConfiguration and AWSCredentialsProvider, then
create the TransferUtility object. AWSMobileClient expects an activity context for resuming an
authenticated session and creating the credentials provider.

The following example shows using the transfer utility in the context of an Activity. If you are
creating transfer utility from an application context, you can construct the CredentialsProvider and
AWSConfiguration object and pass it into TransferUtility. The TransferUtility will check the size of file
being uploaded and will automatically switch over to using multi part uploads if the file size exceeds
5 MB.

import android.app.Activity;
import android.util.Log;

import com.amazonaws.mobile.client.AWSMobileClient;

import com.amazonaws.mobileconnectors.s3.transferutility.TransferUtility;
import com.amazonaws.mobileconnectors.s3.transferutility.TransferState;
import com.amazonaws.mobileconnectors.s3.transferutility.TransferObserver;
import com.amazonaws.mobileconnectors.s3.transferutility.TransferListener;
import com.amazonaws.services.s3.AmazonS3Client;

import java.io.File;
public class YourActivity extends Activity {

@Override

protected void onCreate(Bundle savedInstanceState) {
AWSMobileClient.getInstance().initialize(this).execute();
uploadWithTransferUtility();

}

private void uploadWithTransferUtility() {

TransferUtility transferUtility =
TransferUtility.builder()
.context(getApplicationContext())
.awsConfiguration(AWSMobileClient.getInstance().getConfiguration())
.s3Client(new
AmazonS3Client(AWSMobileClient.getInstance().getCredentialsProvider()))
.build();

TransferObserver uploadObserver =
transferUtility.upload(
"s3Folder/s3Key.txt",
new File("/path/to/file/localFile.txt"));

// Attach a listener to the observer to get state update and progress
notifications
uploadObserver.setTransferListener(new TransferListener() {

@Override
public void onStateChanged(int id, TransferState state) {
if (TransferState.COMPLETED == state) {
// Handle a completed upload.
}
}
@Override

public void onProgressChanged(int id, long bytesCurrent, long bytesTotal) {
float percentDonef = ((float) bytesCurrent / (float) bytesTotal) * 100;
int percentDone = (int)percentDonef;

Log.d("YourActivity", "ID:" + id + " bytesCurrent: " + bytesCurrent
+ " bytesTotal: " + bytesTotal + " " + percentDone + "%");

195

AWS Mobile Developer Guide
User File Storage (Amazon S3)

@Override
public void onError(int id, Exception ex) {
// Handle errors

}
DK

// If you prefer to poll for the data, instead of attaching a
// listener, check for the state and progress in the observer.
if (TransferState.COMPLETED == uploadObserver.getState()) {

// Handle a completed upload.

}

Log.d("YourActivity", "Bytes Transferrred: " +
uploadObserver.getBytesTransferred());

Log.d("YourActivity", "Bytes Total: " + uploadObserver.getBytesTotal());

}

Android - Kotlin
The following example shows how to upload a file to an Amazon S3 bucket.

Use AWSMobileClient to get the AWSConfiguration and AWSCredentialsProvider, then
create the TransferUtility object. AWSMobileClient expects an activity context for resuming an
authenticated session and creating the credentials provider.

The following example shows using the transfer utility in the context of an Activity. If you are
creating transfer utility from an application context, you can construct the CredentialsProvider and
AWSConfiguration object and pass it into TransferUtility. The TransferUtility will check the size of file
being uploaded and will automatically switch over to using multi part uploads if the file size exceeds
5 MB.

import android.app.Activity;
import android.util.Log;

import com.amazonaws.mobile.client.AWSMobileClient;

import com.amazonaws.mobileconnectors.s3.transferutility.TransferUtility;
import com.amazonaws.mobileconnectors.s3.transferutility.TransferState;
import com.amazonaws.mobileconnectors.s3.transferutility.TransferObserver;
import com.amazonaws.mobileconnectors.s3.transferutility.TransferListener;
import com.amazonaws.services.s3.AmazonS3Client;

import java.io.File;

class MainActivity : Activity() {
override fun onCreate(savedInstanceState: Bundle?) {
super.onCreate()
AWSMobileClient.getInstance().initialize(this).execute()
uploadWithTransferUtility(
"s3Folder/s3Key.txt"
File("/path/to/file/localfile.txt")

}

private fun uploadWithTransferUtility(remote: String, local: File) {
val txUtil = TransferUtility.builder()
.context(getApplicationContext)
.awsConfiguration(AWSMobileClient.getInstance().configuration)

.s3Client(AmazonS3Client(AWSMobileClient.getInstance().credentialsProvider))
.build()

196

AWS Mobile Developer Guide
User File Storage (Amazon S3)

val txObserver = txUtil.upload(remote, local)
txObserver.transferListener = object : TransferListener() {
override fun onStateChanged(id: Int, state: TransferState) {
if (state == TransferState.COMPLETED) {
// Handle a completed upload
}
}

override fun onProgressChanged(id: Int, current: Long, total: Long) {
val done = (((current / total) * 100.0) as Float) as Int
Log.d(TAG, "ID: $id, percent done = $done")

}

override fun onError(id: Int, ex: Exception) {
// Handle errors
}
}

// If you prefer to poll for the data, instead of attaching a
// listener, check for the state and progress in the observer.
if (txObserver.state == TransferState.COMPLETED) {

// Handle a completed upload.
}

iOS - Swift

The transfer utility provides methods for both single-part and multipart uploads. When a transfer
uses multipart upload, the data is chunked into a number of 5 MB parts which are transferred in
parallel for increased speed.

The following example shows how to upload a file to an Amazon S3 bucket.

func uploadData() {
let data: Data = Data() // Data to be uploaded

let expression = AWSS3TransferUtilityUploadExpression()
expression.progressBlock = {(task, progress) in
DispatchQueue.main.async(execute: {
// Do something e.g. Update a progress bar.
D)
}

var completionHandler: AWSS3TransferUtilityUploadCompletionHandlerBlock?
completionHandler = { (task, error) -> Void in
DispatchQueue.main.async(execute: {
// Do something e.g. Alert a user for transfer completion.
// On failed uploads, “error~ contains the error object.
D)
}

let transferUtility = AWSS3TransferUtility.default()

transferUtility.uploadData(data,

bucket: "YourBucket",

key: "YourFileName",

contentType: "text/plain",

expression: expression,

completionHandler: completionHandler).continueWith {

(task) -> AnyObject! in
if let error = task.error {
print("Error: \(error.localizedDescription)")

197

AWS Mobile Developer Guide
User File Storage (Amazon S3)

}
if let _ = task.result {

// Do something with uploadTask.
}

return nil;

The following example shows how to upload a file to an Amazon S3 bucket using multipart uploads.

func uploadData() {
let data: Data = Data() // Data to be uploaded

let expression = AWSS3TransferUtilityMultiPartUploadExpression()
expression.progressBlock = {(task, progress) in
DispatchQueue.main.async(execute: {
// Do something e.g. Update a progress bar.
D)
}

var completionHandler: AWSS3TransferUtilityMultiPartUploadCompletionHandlerBlock
completionHandler = { (task, error) -> Void in
DispatchQueue.main.async(execute: {
// Do something e.g. Alert a user for transfer completion.
// On failed uploads, “error~ contains the error object.
H
}

let transferUtility = AWSS3TransferUtility.default()

transferUtility.uploadUsingMultiPart(data:data,

bucket: "YourBucket",
key: "YourFileName",
contentType: "text/plain",
expression: expression,
completionHandler: completionHandler).continueWith {

(task) -> AnyObject! in

if let error = task.error {
print("Error: \(error.localizedDescription)")

}
if let _ = task.result {

// Do something with uploadTask.
}

return nil;

Download a File

Android - Java

The following example shows how to download a file from an Amazon S3 bucket. We use
AWSMobileClient to get the AWSConfiguration and AWSCredentialsProvider to create
the TransferUtility object. AWSMobileClient expects an activity context for resuming an
authenticated session and creating the credentials provider.

This example shows using the transfer utility in the context of an Activity. If you are creating transfer
utility from an application context, you can construct the CredentialsProvider and AWSConfiguration
object and pass it into TransferUtility.

198

AWS Mobile Developer Guide
User File Storage (Amazon S3)

import android.app.Activity;
import android.util.Log;

import com.amazonaws.mobile.client.AWSMobileClient;

import com.amazonaws.mobileconnectors.s3.transferutility.TransferUtility;
import com.amazonaws.mobileconnectors.s3.transferutility.TransferState;
import com.amazonaws.mobileconnectors.s3.transferutility.TransferObserver;
import com.amazonaws.mobileconnectors.s3.transferutility.TransferListener;
import com.amazonaws.services.s3.AmazonS3Client;

import java.io.File;
public class YourActivity extends Activity {

@Override
protected void onCreate(Bundle savedInstanceState) {
AWSMobileClient.getInstance().initialize(this).execute();
downloadWithTransferUtility();

}

public void downloadWithTransferUtility() {

TransferUtility transferUtility =
TransferUtility.builder()
.context(getApplicationContext())
.awsConfiguration(AWSMobileClient.getInstance().getConfiguration())
.s3Client(new
AmazonS3Client(AWSMobileClient.getInstance().getCredentialsProvider()))
.build();

TransferObserver downloadObserver =
transferUtility.download(
"s3Folder/s3Key.txt",
new File("/path/to/file/localFile.txt"));

// Attach a listener to the observer to get notified of the
// updates in the state and the progress
downloadObserver.setTransferListener(new TransferListener() {

@Override
public void onStateChanged(int id, TransferState state) {
if (TransferState.COMPLETED == state) {
// Handle a completed upload.
}
}
@Override

public void onProgressChanged(int id, long bytesCurrent, long bytesTotal) {
float percentDonef = ((float)bytesCurrent/(float)bytesTotal) * 100;
int percentDone = (int)percentDonef;

Log.d("MainActivity", " ID:" + id + " bytesCurrent: " +
bytesCurrent + " bytesTotal: " + bytesTotal + " " + percentDone + "%");
}
@Override

public void onError(int id, Exception ex) {
// Handle errors

}
)i
// If you do not want to attach a listener and poll for the data

// from the observer, you can check for the state and the progress
// in the observer.

199

AWS Mobile Developer Guide
User File Storage (Amazon S3)

if (TransferState.COMPLETED == downloadObserver.getState()) {
// Handle a completed upload.
}

Log.d("YourActivity", "Bytes Transferrred: " +
downloadObserver.getBytesTransferred());
Log.d("YourActivity", "Bytes Total: " + downloadObserver.getBytesTotal());
}

Android - Kotlin

The following example shows how to download a file from an Amazon S3 bucket. We use
AWSMobileClient to get the AWSConfiguration and AWSCredentialsProvider to create
the TransferUtility object. AWSMobileClient expects an activity context for resuming an
authenticated session and creating the credentials provider.

This example shows using the transfer utility in the context of an Activity. If you are creating transfer
utility from an application context, you can construct the CredentialsProvider and AWSConfiguration
object and pass it into TransferUtility.

import android.app.Activity;
import android.util.Log;

import com.amazonaws.mobile.client.AWSMobileClient;

import com.amazonaws.mobileconnectors.s3.transferutility.TransferUtility;
import com.amazonaws.mobileconnectors.s3.transferutility.TransferState;
import com.amazonaws.mobileconnectors.s3.transferutility.TransferObserver;
import com.amazonaws.mobileconnectors.s3.transferutility.TransferListener;
import com.amazonaws.services.s3.AmazonS3Client;

import java.io.File;

class MainActivity : Activity() {
override fun onCreate(savedInstanceState: Bundle?) {
super.onCreate()
AWSMobileClient.getInstance().initialize(this).execute()
downloadWithTransferUtility(
"s3Folder/s3Key.txt"
File("/path/to/file/localfile.txt")

}

private fun downloadWithTransferUtility(remote: String, local: File) {
val txUtil = TransferUtility.builder()
.context(getApplicationContext)
.awsConfiguration(AWSMobileClient.getInstance().configuration)

.s3Client(AmazonS3Client(AWSMobileClient.getInstance().credentialsProvider))
.build()

val txObserver = txUtil.download(remote, local)
txObserver.transferListener = object : TransferListener() {
override fun onStateChanged(id: Int, state: TransferState) {
if (state == TransferState.COMPLETED) {
// Handle a completed upload
}
}

override fun onProgressChanged(id: Int, current: Long, total: Long) {
val done = (((current / total) * 100.0) as Float) as Int
Log.d(TAG, "ID: $id, percent done = $done")

200

AWS Mobile Developer Guide
User File Storage (Amazon S3)

override fun onError(id: Int, ex: Exception) {
// Handle errors
}
}

// If you prefer to poll for the data, instead of attaching a
// listener, check for the state and progress in the observer.
if (txObserver.state == TransferState.COMPLETED) {

// Handle a completed upload.

}

iOS - Swift

The following example shows how to download a file from an Amazon S3 bucket.

func downloadData() {
let expression = AWSS3TransferUtilityDownloadExpression()
expression.progressBlock = {(task, progress) in DispatchQueue.main.async(execute: {
// Do something e.g. Update a progress bar.
D)
}

var completionHandler: AWSS3TransferUtilityDownloadCompletionHandlerBlock?
completionHandler = { (task, URL, data, error) -> Void in
DispatchQueue.main.async(execute: {
// Do something e.g. Alert a user for transfer completion.
// On failed downloads, “error~ contains the error object.
D)
}

let transferUtility = AWSS3TransferUtility.default()
transferUtility.downloadData(

fromBucket: "YourBucket",

key: "YourFileName",

expression: expression,

completionHandler: completionHandler

).continueWith {

(task) -> AnyObject! in if let error = task.error {
print("Error: \(error.localizedDescription)")

}

if let _ = task.result {
// Do something with downloadTask.

}

return nil;

Track Transfer Progress
Android - Java

With the TransferUtility, the download() and upload() methods return a TransferObserver
object. This object gives access to:

1. The state, as an enum
2. The total bytes currently transferred
3. The total bytes remaining to transfer, to aid in calculating progress bars

201

AWS Mobile Developer Guide
User File Storage (Amazon S3)

4. A unique ID that you can use to keep track of distinct transfers

Given the transfer ID, the TransferObserver object can be retrieved from anywhere in your app,
even if the app was terminated during a transfer. It also lets you create a TransferListener,
which will be updated on state or progress change, as well as when an error occurs.

To get the progress of a transfer, call setTransferListener () on your TransferObserver. This
requires you to implement onStateChanged, onProgressChanged, and onError. For example:

You can also query for TransferObservers with either the
getTransfersWithType(transferType) or
getTransfersWithTypeAndState(transferType, transferState) method. You can use
TransferObservers to determine what transfers are underway, what are paused and handle the
transfers as necessary.

TransferObserver transferObserver = download(MY_BUCKET, OBJECT_KEY, MY FILE);
transferObserver.setTransferListener(new TransferListener(){

@Override

public void onStateChanged(int id, TransferState state) {
// do something

}

@Override

public void onProgressChanged(int id, long bytesCurrent, long bytesTotal) {
int percentage = (int) (bytesCurrent/bytesTotal * 100);
//Display percentage transfered to user

}

@Override
public void onError(int id, Exception ex) {
// do something
}
)i

The transfer ID can be retrieved from the TransferObserver object that is returned from upload
or download function.

// Gets id of the transfer.
int transferId = transferObserver.getId();

Android - Kotlin

With the TransferUtility, the download() and upload() methods return a TransferObserver
object. This object gives access to:

1. The state, as an enum

2. The total bytes currently transferred

3. The total bytes remaining to transfer, to aid in calculating progress bars
4. A unique ID that you can use to keep track of distinct transfers

Given the transfer ID, the TransferObserver object can be retrieved from anywhere in your app,
even if the app was terminated during a transfer. It also lets you create a TransferListener,
which will be updated on state or progress change, as well as when an error occurs.

To get the progress of a transfer, call setTransferListener () on your TransferObserver. This
requires you to implement onsStateChanged, onProgressChanged, and onError. For example:

202

AWS Mobile Developer Guide
User File Storage (Amazon S3)

You can also query for TransferObservers with either the
getTransfersWithType(transferType) or
getTransfersWithTypeAndState(transferType, transferState) method. You can use
TransferObservers to determine what transfers are underway, what are paused and handle the
transfers as necessary.

val transferObserver = download(MY_BUCKET, OBJECT_KEY, MY FILE);
transferObserver.transferListener = object : TransferListener() {
override fun onStateChanged(id: Int, state: TransferState) {
// Do something

}

override fun onProgressChanged(id: int, current: Long, total: Long) {
int percent = ((current / total) * 100.0) as Int
// Display percent transferred

}

override fun onError(id: Int, ex: Exception) {
// Do something
}

The transfer ID can be retrieved from the TransferObserver object that is returned from upload
or download function.

// Gets id of the transfer.
val transferId = transferObserver.id;

iOS - Swift

Implement progress and completion actions for transfers by passing a progressBlock and
completionHandler blocks to the call to AWSS3TransferUtility that initiates the transfer.

The following example of initiating a data upload, shows how progress and completion

handling is typically done for all transfers. The AWSS3TransferUtilityUploadExpression,
AWSS3TransferUtilityMultiPartUploadExpression and
AWSS3TransferUtilityDownloadExpression contains the progressBlock that gives you the
progress of the transfer which you can use to update the progress bar.

// For example, create a progress bar
let progressView: UIProgressView! = UIProgressView()
progressView.progress = 0.0;

let data = Data() // The data to upload

let expression = AWSS3TransferUtilityUploadExpression()
expression.progressBlock = {(task, progress) in DispatchQueue.main.async(execute: {
// Update a progress bar.
progressView.progress = Float(progress.fractionCompleted)
D)
}

let completionHandler: AWSS3TransferUtilityUploadCompletionHandlerBlock = { (task,
error) -> Void in DispatchQueue.main.async(execute: {
if let error = error {
NSLog("Failed with error: \(error)")

}

else if(self.progressView.progress != 1.0) {
NSLog("Error: Failed.")

} else {

NSLog("Success.")

203

AWS Mobile Developer Guide
User File Storage (Amazon S3)

»
¥

var refUploadTask: AWSS3TransferUtilityTask?
let transferUtility = AWSS3TransferUtility.default()
transferUtility.uploadData(data,
bucket: "S3BucketName",
key: "S3UploadKeyName",
contentType: "text/plain",
expression: expression,
completionHandler: completionHandler).continueWith { (task) -> AnyObject! in
if let error = task.error {
print("Error: \(error.localizedDescription)")

}

if let uploadTask = task.result {
// Do something with uploadTask.
// The uploadTask can be used to pause/resume/cancel the operation,
retrieve task specific information
refUploadTask = uploadTask
}

return nil;

Pause a Transfer

Android - Java

Transfers can be paused using the pause(transferId) method. If your app is terminated, crashes,
or loses Internet connectivity, transfers are automatically paused.

The transferId can be retrieved from the TransferoObserver object as described in Track
Transfer Progress (p. 201).

To pause a single transfer:

transferUtility.pause(idOfTransferToBePaused);

To pause all uploads:

transferUtility.pauseAllWithType(TransferType.UPLOAD);

To pause all downloads:

transferUtility.pauseAllWithType(TransferType.DOWNLOAD);

To pause all transfers of any type:

transferUtility.pauseAllWithType(TransferType.ANY);

Android - Kotlin

Transfers can be paused using the pause(transferid) method. If your app is terminated, crashes,
or loses Internet connectivity, transfers are automatically paused.

The transferId can be retrieved from the TransferObserver object as described in Track
Transfer Progress (p. 201).

204

AWS Mobile Developer Guide
User File Storage (Amazon S3)

To pause a single transfer:

transferUtility.pause(idOfTransferToBePaused);

To pause all uploads:

transferUtility.pauseAllWithType(TransferType.UPLOAD);

To pause all downloads:

transferUtility.pauseAllWithType(TransferType.DOWNLOAD);

To pause all transfers of any type:

transferUtility.pauseAllWithType(TransferType.ANY);

iOS - Swift

To pause or suspend a transfer, retain references to AWSS3TransferUtilityUploadTask,
AWSS3TransferUtilityMultiPartUploadTask or AWSS3TransferUtilityDownloadTask.

As described in the previous section Track Transfer Progress (p. 201), the variable refUploadTask
is a reference to the UploadTask object that is retrieved from the continuewith block of an
upload operation that is invoked through transferUtility.uploadData.

To pause a transfer, use the suspend method:

refUploadTask.suspend()

Resume a Transfer

Android - Java
In the case of a loss in network connectivity, transfers will automatically resume when network
connectivity is restored. If the app crashed or was terminated by the operating system, transfers can

be resumed with the resume(transferId) method.

The transferId can be retrieved from the TransferObserver object as described in Track
Transfer Progress (p. 201).

To resume a single transfer:

transferUtility.resume(idOfTransferToBeResumed);

To resume all uploads:

transferUtility.resumeAllWithType(TransferType.UPLOAD);

To resume all downloads:

transferUtility.resumeAllWithType(TransferType.DOWNLOAD);

205

AWS Mobile Developer Guide
User File Storage (Amazon S3)

To resume all transfers of any type:

transferUtility.resumeAllWithType(TransferType.ANY);

Android - Kotlin
In the case of a loss in network connectivity, transfers will automatically resume when network
connectivity is restored. If the app crashed or was terminated by the operating system, transfers can
be resumed with the resume (transferid) method.

The transferId can be retrieved from the TransferObserver object as described in Track
Transfer Progress (p. 201).

To resume a single transfer:

transferUtility.resume(idOfTransferToBeResumed);

To resume all uploads:

transferUtility.resumeAllWithType(TransferType.UPLOAD);

To resume all downloads:

transferUtility.resumeAllWithType(TransferType.DOWNLOAD);

To resume all transfers of any type:

transferUtility.resumeAllWithType(TransferType.ANY);

iOS - Swift

To resume an upload or a download operation, retain references to
AWSS3TransferUtilityUploadTask, AWSS3TransferUtilityMultiPartUploadTask or
AWSS3TransferUtilityDownloadTask.

As described in the previous section Track Transfer Progress (p. 201), the variable refUploadTask
is a reference to the UploadTask object that is retrieved from the continuewith block of an
upload operation that is invoked through transferUtility.uploadData.

To resume a transfer, use the resume method:

refUploadTask.resume()

Cancel a Transfer
Android - Java
To cancel an upload, call cancel() or cancelAllWithType() on the TransferUtility object.

The transferId can be retrieved from the TransferObserver object as described in Track
Transfer Progress (p. 201).

To cancel a single transfer, use:

206

AWS Mobile Developer Guide
User File Storage (Amazon S3)

transferUtility.cancel(idToBeCancelled);

To cancel all transfers of a certain type, use:

transferUtility.cancelAllWithType(TransferType.DOWNLOAD);

Android - Kotlin
To cancel an upload, call cancel() or cancelAllWithType() on the TransferUtility object.

The transferId can be retrieved from the TransferObserver object as described in Track
Transfer Progress (p. 201).

To cancel a single transfer, use:

transferUtility.cancel(idToBeCancelled);

To cancel all transfers of a certain type, use:

transferUtility.cancelAllWithType(TransferType.DOWNLOAD);

iOS - Swift

To cancel an upload or a download operation, retain references to
AWSS3TransferUtilityUploadTask, AWSS3TransferUtilityMultiPartUploadTask and
AWSS3TransferUtilityDownloadTask.

As described in the previous section Track Transfer Progress (p. 201), the variable refUploadTask
is a reference to the UploadTask object that is retrieved from the continuewith block of an
upload operation that is invoked through transferUtility.uploadData.

To cancel a transfer, use the cancel method:

refUploadTask.cancel()

Background Transfers

The SDK supports uploading to and downloading from Amazon S3 while your app is running in the
background.

Android - Java

No additional work is needed to use this feature. As long as your app is present in the background a

transfer that is in progress will continue.
Android - Kotlin

No additional work is needed to use this feature. As long as your app is present in the background a

transfer that is in progress will continue.
iOS - Swift

Configure the Application Delegate

The TransferUtility for iOS uses NSURLSession background transfers to continue data
transfers even when your app moves to the background. Call the following method in the -
application:handleEventsForBackgroundURLSession: completionHandler: of your

207

AWS Mobile Developer Guide
User File Storage (Amazon S3)

application delegate. When the app moves the foreground, the delegate enables iOS to notify
TransferUtility that a transfer has completed.

func application(_ application: UIApplication, handleEventsForBackgroundURLSession
identifier: String, completionHandler: @escaping () -> Void) {
// Store the completion handler.
AWSS3TransferUtility.interceptApplication(application,
handleEventsForBackgroundURLSession: identifier, completionHandler: completionHandler)

}

Manage a Transfer with the App in the Foreground

To manage transfers for an app that has moved from the background to

the foregroud, retain references to AWSS3TransferUtilityUploadTask,
AWSS3TransferUtilityMultiPartUploadTask and AWSS3TransferUtilityDownloadTask.
Call suspend, resume, or cancel methods on those task references. The following example shows
how to suspend a transfer when the app is about to be terminated.

transferUtility.uploadFile(fileURL,
bucket: S3BucketName,
key: S3UploadKeyName,
contentType: "image/png",
expression: nil,
completionHandler: nil).continueWith {
(task) -> AnyObject! in if let error = task.error {
print("Error: \(error.localizedDescription)")

}

if let uploadTask = task.result {
uploadTask.suspend()

}

return nil;

Manage a Transfer when a Suspended App Returns to the Foreground

When an app that has initiated a transfer becomes suspended and then returns to the foreground,
the transfer may still be in progress or may have completed. In both cases, use the following code to
reestablish the progress and completion handler blocks of the app.

This code example is for downloading a file but the same pattern can be used for upload:

You can get a reference to the AWSS3TransferUtilityUploadTask,
AWSS3TransferUtilityMultiPartUploadTask and AWSS3TransferUtilityDownloadTask
objects from the task.result in continueWith block when you initiate the upload and download
respectively. These tasks have a property called taskldentifier, which uniquely identifies the transfer
task object within the AWSS3TransferUtility. Your app should persist the identifier through
closure and relaunch, so that you can uniquely identify the task objects when the app comes back
into the foreground.

let transferUtility = AWSS3TransferUtility.default()

var uploadProgressBlock: AWSS3TransferUtilityProgressBlock? = {(task:
AWSS3TransferUtilityTask, progress: Progress) in
DispatchQueue.main.async {
// Handle progress feedback, e.g. update progress bar

}

var downloadProgressBlock: AWSS3TransferUtilityProgressBlock? = {

208

AWS Mobile Developer Guide
User File Storage (Amazon S3)

(task: AWSS3TransferUtilityTask, progress: Progress) in DispatchQueue.main.async {
// Handle progress feedback, e.g. update progress bar
}

}
var completionBlockUpload:AWSS3TransferUtilityUploadCompletionHandlerBlock? = {

(task, error) in DispatchQueue.main.async {
// perform some action on completed upload operation
}

}
var completionBlockDownload:AWSS3TransferUtilityDownloadCompletionHandlerBlock? = {

(task, url, data, error) in DispatchQueue.main.async {
// perform some action on completed download operation

}

transferUtility.enumerateToAssignBlocks(forUploadTask: {
(task, progress, completion) -> Void in

let progressPointer =
AutoreleasingUnsafeMutablePointer<AWSS3TransferUtilityProgressBlock?>(&
uploadProgressBlock)

let completionPointer =
AutoreleasingUnsafeMutablePointer<AWSS3TransferUtilityUploadCompletionHandlerBlock?
>(&completionBlockUpload)

// Reassign your progress feedback
progress?.pointee = progressPointer.pointee

// Reassign your completion handler.
completion?.pointee = completionPointer.pointee

}, downloadTask: {
(task, progress, completion) -> Void in

let progressPointer =
AutoreleasingUnsafeMutablePointer<AWSS3TransferUtilityProgressBlock?
>(&downloadProgressBlock)

let completionPointer =
AutoreleasingUnsafeMutablePointer<AWSS3TransferUtilityDownloadCompletionHandlerBlock?
>(&completionBlockDownload)

// Reassign your progress feedback
progress?.pointee = progressPointer.pointee

// Reassign your completion handler.
completion?.pointee = completionPointer.pointee

»

if let downloadTask = task.result {
// Do something with downloadTask.

Advanced Transfer Methods

Topics
« Transfer with Object Metadata (p. 210)
 Transfer with Access Control List (p. 211)
« Transfer Utility Options (p. 212)

209

AWS Mobile Developer Guide
User File Storage (Amazon S3)

Transfer with Object Metadata
Android - Java

To upload a file with metadata, use the ObjectMetadata object. Create a ObjectMetadata object
and add in the metadata headers and pass it to the upload function.

import com.amazonaws.services.s3.model.ObjectMetadata;
ObjectMetadata myObjectMetadata = new ObjectMetadata();

//create a map to store user metadata

Map<String, String> userMetadata = new HashMap<String,String>();

userMetadata.put("myKey", "myvVal");

//call setUserMetadata on our ObjectMetadata object, passing it our map
myObjectMetadata.setUserMetadata(userMetadata);

Then, upload an object along with its metadata:

TransferObserver observer = transferUtility.upload(

MY_BUCKET, /* The bucket to upload to */
OBJECT_KEY, /* The key for the uploaded object */
MY_FILE, /* The file where the data to upload exists */

myObjectMetadata /* The ObjectMetadata associated with the object*/
)i

To download the meta, use the S3 getObjectMetadata method. For more information, see the API
Reference.

Android - Kotlin

To upload a file with metadata, use the ObjectMetadata object. Create a ObjectMetadata object
and add in the metadata headers and pass it to the upload function.

import com.amazonaws.services.s3.model.ObjectMetadata;

val myObjectMetadata = new ObjectMetadata()
myObjectMetadata.userMetadata = mapOf("myKey" to "myVal")

Then, upload an object along with its metadata:

val observer = transferUtility.upload(

MY_BUCKET, /* The bucket to upload to */
OBJECT_KEY, /* The key for the uploaded object */
MY_FILE, /* The file where the data to upload exists */

myObjectMetadata /* The ObjectMetadata associated with the object*/

To download the meta, use the S3 getObjectMetadata method. For more information, see the API
Reference.

iOS - Swift

AWSS3TransferUtilityUploadExpression and
AWSS3TransferUtilityMultiPartUploadExpression contain the method
setValue:forRequestHeader where you can pass in metadata to Amazon S3. This example
demonstrates passing in the Server-side Encryption Algorithm as a request header in uploading data
to S3 using MultiPart.

210

http://docs.aws.amazon.com/AWSAndroidSDK/latest/javadoc/com/amazonaws/services/s3/AmazonS3Client.html#getObjectMetadata%28com.amazonaws.services.s3.model.GetObjectMetadataRequest%29
http://docs.aws.amazon.com/AWSAndroidSDK/latest/javadoc/com/amazonaws/services/s3/AmazonS3Client.html#getObjectMetadata%28com.amazonaws.services.s3.model.GetObjectMetadataRequest%29
http://docs.aws.amazon.com/AWSAndroidSDK/latest/javadoc/com/amazonaws/services/s3/AmazonS3Client.html#getObjectMetadata%28com.amazonaws.services.s3.model.GetObjectMetadataRequest%29
http://docs.aws.amazon.com/AWSAndroidSDK/latest/javadoc/com/amazonaws/services/s3/AmazonS3Client.html#getObjectMetadata%28com.amazonaws.services.s3.model.GetObjectMetadataRequest%29

AWS Mobile Developer Guide
User File Storage (Amazon S3)

let data: Data = Data() // The data to upload

let uploadExpression = AWSS3TransferUtilityMultiPartUploadExpression()
uploadExpression.setValue("AES256", forRequestHeader: "x-amz-server-side-encryption-
customer-algorithm")

{
// Do something e.g. Update a progress bar.
D)
}

let transferUtility = AWSS3TransferUtility.default()

transferUtility.uploadUsingMultiPart(data:data,
bucket: "S3BucketName",
key: "S3UploadKeyName",
contentType: "text/plain",
expression: uploadExpression,
completionHandler: nil).continueWith { (task) -> AnyObject! in
if let error = task.error {
print("Error: \(error.localizedDescription)")

}

return nil;

uploadExpression.progressBlock = {(task, progress) in DispatchQueue.main.async(execute:

Transfer with Access Control List
Android - Java

To upload a file with Access Control List, use the CannedAccessControlList object. The
CannedAccessControlList specifies the constants defining a canned access control list. For
example, if you use CannedAccessControlList.PublicRead , this specifies the owner is granted
Permission.FullControl and the GroupGrantee.AllUsers group grantee is granted
Permission.Read access.

Then, upload an object along with its ACL:

TransferObserver observer = transferUtility.upload(

MY_BUCKET, /* The bucket to upload to */

OBJECT_KEY, /* The key for the uploaded object */

MY FILE, /* The file where the data to upload exists */
CannedAccessControlList.PublicRead /* Specify PublicRead ACL for the object in the
bucket. */

N

Android - Kotlin

To upload a file with Access Control List, use the CannedAccessControlList object. The
CannedAccessControlList specifies the constants defining a canned access control list. For
example, if you use CannedAccessControlList.PublicRead , this specifies the owner is granted
Permission.FullControl and the GroupGrantee.AllUsers group grantee is granted
Permission.Read access.

Then, upload an object along with its ACL:

val observer = transferUtility.upload(

MY_BUCKET, /* The bucket to upload to */
OBJECT_KEY, /* The key for the uploaded object */
MY_FILE, /* The file where the data to upload exists */

211

http://docs.aws.amazon.com/AWSAndroidSDK/latest/javadoc/com/amazonaws/services/s3/model/CannedAccessControlList.html
http://docs.aws.amazon.com/AWSAndroidSDK/latest/javadoc/com/amazonaws/services/s3/model/CannedAccessControlList.html#PublicRead
http://docs.aws.amazon.com/AWSAndroidSDK/latest/javadoc/com/amazonaws/services/s3/model/CannedAccessControlList.html
http://docs.aws.amazon.com/AWSAndroidSDK/latest/javadoc/com/amazonaws/services/s3/model/CannedAccessControlList.html#PublicRead

AWS Mobile Developer Guide
User File Storage (Amazon S3)

CannedAccessControlList.PublicRead /* Specify PublicRead ACL for the object in the
bucket. */
)

iOS - Swift

To upload a file and specify permissions for it, you can use predefined grants, also known as canned
ACLs. The following code shows you how to setup a file with publicRead access using the AWSS3
client.

//Create a AWSS3PutObjectRequest object and setup the content, bucketname, key on it.
//use the .acl method to specify the ACL for the file
let s3: AWSS3 = AWSS3.default()

let putObjectRequest: AWSS3PutObjectRequest! = AWSS3PutObjectRequest()
let content = "testObjectData"

putObjectRequest.acl = AWSS30bjectCannedACL.publicRead
putObjectRequest.bucket = "bucket name"

putObjectRequest.key = "file name"

putObjectRequest.body = content

putObjectRequest.contentLength = content.count as NSNumber
putObjectRequest.contentType = "text/plain";

s3.putObject(putObjectRequest, completionHandler:
{ (putObjectOutput:AWSS3PutObjectOutput? , error: Error?) in
if let output = putObjectOutput {
print (output)
¥

if let error = error {
print (error)

)

Transfer Utility Options
Android - Java

You can use the TransferUtilityOptions object to customize the operations of the
TransferUtility.

TransferThreadPoolSize This parameter will let you specify the number of threads in the thread
pool for transfers. By increasing the number of threads, you will be able to increase the number of
parts of a mulit-part upload that will be uploaded in parallel. By default, this is set to 2 * (N + 1),
where N is the number of available processors on the mobile device. The minimum allowed value is
2.

TransferUtilityOptions options = new TransferUtilityOptions();
options.setTransferThreadPoolSize(8);

TransferUtility transferUtility = TransferUtility.builder()
// Pass-in S3Client, Context, AWSConfiguration/DefaultBucket Name
.transferUtilityOptions(options)
.build();

TransferServiceCheckTimelnterval The TransferUtility monitors each on-going transfer by
checking its status periodically. If a stalled transfer is detected, it will be automatically resumed by
the TransferUtility. The TransferServiceCheckTimelnterval option allows you to set the time
interval between the status checks. It is specified in milliseconds and set to 60,000 by default.

212

AWS Mobile Developer Guide
User File Storage (Amazon S3)

TransferUtilityOptions options = new TransferUtilityOptions();
options.setTransferServiceCheckTimeInterval(2 * 60 * 1000); // 2-minutes

TransferUtility transferUtility = TransferUtility.builder()
// Pass-in S3Client, Context, AWSConfiguration/DefaultBucket Name
.transferUtilityOptions(options)
.build();

Android - Kotlin

You can use the TransferUtilityOptions object to customize the operations of the
TransferUtility.

TransferThreadPoolSize This parameter will let you specify the number of threads in the thread
pool for transfers. By increasing the number of threads, you will be able to increase the number of
parts of a mulit-part upload that will be uploaded in parallel. By default, thisis setto 2 * (N + 1),
where N is the number of available processors on the mobile device. The minimum allowed value is
2.

val options = new TransferUtilityOptions().apply {
transferThreadPoolSize = 8

}

val transferUtility = TransferUtility.builder()
// Pass-in S3Client, Context, AWSConfiguration/DefaultBucket Name
.transferUtilityOptions(options)
.build()

TransferServiceCheckTimelnterval The TransferUtility monitors each on-going transfer by
checking its status periodically. If a stalled transfer is detected, it will be automatically resumed by
the TransferUtility. The TransferServiceCheckTimelnterval option allows you to set the time
interval between the status checks. It is specified in milliseconds and set to 60,000 by default.

val options = new TransferUtilityOptions().apply {
transferServiceCheckTimeInterval = 2 * 60 * 1000 // 2-minutes

}

val transferUtility = TransferUtility.builder()
// Pass-in S3Client, Context, AWSConfiguration/DefaultBucket Name
.transferUtilityOptions(options)
.build()

iOS - Swift

You can use the AWSS3TransferUtilityConfiguration object to configure the operations of
the TransferUtility.

isAccelerateModeEnabled The isAccelerateModeEnabled option lets you to upload and

download content from a bucket that has Transfer Acceleration enabled on it. See https://
docs.aws.amazon.com/AmazonS3/latest/dev/transfer-acceleration.html for information on how to
enable transfer acceleration for your bucket.

This option is set to false by default.

//Setup credentials
let credentialProvider = AWSCognitoCredentialsProvider(regionType: YOUR-IDENTITY-POOL-
REGION, identityPoolId: "YOUR-IDENTITY-POOL-ID")

//Setup the service configuration

213

http://docs.aws.amazon.com/AmazonS3/latest/dev/transfer-acceleration.html
http://docs.aws.amazon.com/AmazonS3/latest/dev/transfer-acceleration.html

AWS Mobile Developer Guide
User File Storage (Amazon S3)

let configuration = AWSServiceConfiguration(region: .USEastl, credentialsProvider:
credentialProvider)

//Setup the transfer utility configuration
let tuConf = AWSS3TransferUtilityConfiguration()
tuConf.isAccelerateModeEnabled = true

//Register a transfer utility object
AWSS3TransferUtility.register(
with: configuration!,
transferUtilityConfiguration: tuConf,
forKey: "transfer-utility-with-advanced-options"

//Look up the transfer utility object from the registry to use for your transfers.
let transferUtility = AWSS3TransferUtility.s3TransferUtility(forKey: "transfer-utility-
with-advanced-options")

e YOUR-IDENTITY-POOL-REGION should be in the form of .USEast1

e YOUR-IDENTITY-POOL-ID should be in the form of us-east-1:01234567-yyyy-0123-
xxxxX-012345678901

retryLimit The retryLimit option allows you to specify the number of times the TransferUtility
will retry a transfer when it encounters an error during the transfer. By default, it is set to 0, which
means that there will be no retries.

tuConf.retryLimit = 5

multiPartConcurrencyLimit The multiPartConcurrencyLimit option allows you to specify the
number of parts that will be uploaded in parallel for a MultiPart upload request. By default, this is
set to 5.

tuConf.multiPartConcurrencyLimit = 3

More Transfer Examples

Topics
« Downloading to a File (p. 214)
» Uploading Binary Data to a File (p. 216)
« Downloading Binary Data to a File (p. 217)

This section provides descriptions and abbreviated examples of the aspects of each type of transfer that
are unique. For information about typical code surrounding the following snippets see Track Transfer
Progress (p. 201).

Downloading to a File
The following code shows how to download an Amazon S3 Obiject to a local file.

Android - Java

TransferObserver downloadObserver =
transferUtility.download(

214

AWS Mobile Developer Guide
User File Storage (Amazon S3)

"s3Folder/s3Key.txt",
new File("/path/to/file/localFile.txt"));

downloadObserver.setTransferListener(new TransferListener() {

@Override
public void onStateChanged(int id, TransferState state) {
if (TransferState.COMPLETED == state) {
// Handle a completed download.

}
¥

@Override

public void onProgressChanged(int id, long bytesCurrent, long bytesTotal) {
float percentDonef = ((float)bytesCurrent/(float)bytesTotal) * 100;
int percentDone = (int)percentDonef;

Log.d("MainActivity", " ID:" + id + " bytesCurrent: " + bytesCurrent + "
bytesTotal: " + bytesTotal + " " + percentDone + "%");
}
@Override

public void onError(int id, Exception ex) {
// Handle errors

}
)i

Android - Kotlin

i0S

val observer = transferUtility.download(
"s3Folder/s3Key.txt",
new File("/path/to/file/localFile.txt"))
observer.transferListener = object : TransferListener() {
override fun onStateChanged(id: int, state: TransferState) {
if (state == TransferState.COMPLETED) {
// Handle a completed download

}
¥

override fun onProgressChanged(id: Int, current: Long, total: Long) {
val done = ((current / total) * 100.0) as Int
// Do something

}

override fun onError(id: Int, ex: Exception) {
// Do something
}

- Swift

let fileURL = // The file URL of the download destination.

let transferUtility = AWSS3TransferUtility.default()
transferUtility.download(

to: fileURL

bucket: S3BucketName,

key: S3DownloadKeyName,

expression: expression,

completionHandler: completionHandler).continueWith {

(task) -> AnyObject! in if let error = task.error {
print("Error: \(error.localizedDescription)")

}

215

AWS Mobile Developer Guide
User File Storage (Amazon S3)

if let _ = task.result {
// Do something with downloadTask.
}

return nil;

Uploading Binary Data to a File
Android - Java

Use the following code to upload binary data to a file in Amazon S3.

TransferObserver uploadObserver =
transferUtility.upload(
"s3Folder/s3Key.bin",
new File("/path/to/file/localFile.bin"));

uploadObserver.setTransferListener(new TransferListener() {

@Override
public void onStateChanged(int id, TransferState state) {
if (TransferState.COMPLETED == state) {
// Handle a completed upload.
}
}
@Override

public void onProgressChanged(int id, long bytesCurrent, long bytesTotal) {
float percentDonef = ((float)bytesCurrent/(float)bytesTotal) * 100;
int percentDone = (int)percentDonef;

Log.d("MainActivity", " ID:" + id + " bytesCurrent: " + bytesCurrent + "
bytesTotal: " + bytesTotal + " " + percentDone + "%");
}
@Override

public void onError(int id, Exception ex) {
// Handle errors

}
)i

Android - Kotlin

Use the following code to upload binary data to a file in Amazon S3.

val observer = transferUtility.upload(
"s3Folder/s3Key.bin",
new File("/path/to/file/localFile.bin"))
observer.transferListener = object : TransferListener() {
override fun onStateChanged(id: int, state: TransferState) {
if (state == TransferState.COMPLETED) {
// Handle a completed download
}
}

override fun onProgressChanged(id: Int, current: Long, total: Long) {
val done = ((current / total) * 100.0) as Int
// Do something

216

AWS Mobile Developer Guide
User File Storage (Amazon S3)

override fun onError(id: Int, ex: Exception) {
// Do something

}

iOS - Swift

To upload a binary data to a file, you have to make sure to set the appropriate content type in the
uploadData method of the TransferUtility. In the example below, we are uploading a PNG image to
S3.

let data: Data = Data() // The data to upload

let transferUtility = AWSS3TransferUtility.default()
transferUtility.uploadData(data,

bucket: S3BucketName,

key: S3UploadKeyName,

contentType: "image/png",

expression: expression,

completionHandler: completionHandler).continueWith { (task) -> AnyObject!
in

if let error = task.error {
print("Error: \(error.localizedDescription)")

}
if let _ = task.result {

// Do something with uploadTask.
}

return nil;

Downloading Binary Data to a File
The following code shows how to download a binary file.

Android - Java

TransferObserver downloadObserver =
transferUtility.download(
"s3Folder/s3Key.bin",
new File("/path/to/file/localFile.bin"));

downloadObserver.setTransferListener(new TransferListener() {

@Override
public void onStateChanged(int id, TransferState state) {
if (TransferState.COMPLETED == state) {
// Handle a completed download.
}
}
@Override
public void onProgressChanged(int id, long bytesCurrent, long bytesTotal) {
float percentDonef = ((float)bytesCurrent/(float)bytesTotal) * 100;
int percentDone = (int)percentDonef;

Log.d("MainActivity", " ID:" + id + " bytesCurrent: " + bytesCurrent + "
bytesTotal: " + bytesTotal + " " + percentDone + "%");
}
@Override

public void onError(int id, Exception ex) {

217

AWS Mobile Developer Guide
User File Storage (Amazon S3)

// Handle errors

)i

Android - Kotlin

i0S

val observer = transferUtility.download(
"s3Folder/s3Key.bin",
new File("/path/to/file/localFile.bin"))
observer.transferListener = object : TransferListener() {
override fun onStateChanged(id: int, state: TransferState) {
if (state == TransferState.COMPLETED) {
// Handle a completed download
}
}

override fun onProgressChanged(id: Int, current: Long, total: Long) {
val done = ((current / total) * 100.0) as Int
// Do something

}

override fun onError(id: Int, ex: Exception) {
// Do something
}

- Swift

let fileURL = // The file URL of the download destination
let transferUtility = AWSS3TransferUtility.default()
transferUtility.downloadData(

fromBucket: S3BucketName,

key: S3DownloadKeyName,

expression: expression,

completionHandler: completionHandler).continueWith {

(task) -> AnyObject! in if let error = task.error {
print("Error: \(error.localizedDescription)")

)
if let _ = task.result {
// Do something with downloadTask.
)
return nil;
}
Limitations

Android - Java

If you expect your app to perform transfers that take longer than 50 minutes, use AmazonS3Client
instead of TransferUtility.

TransferUtility generates Amazon S3 pre-signed URLs to use for background data transfer.
Using Amazon Cognito Identity, you receive AWS temporary credentials. The credentials are valid for
up to 60 minutes. Generated Amazon S3 pre-signed URLs cannot last longer than that time. Because
of this limitation, the Amazon S3 Transfer Utility enforces 50 minute transfer timeouts, leaving a 10
minute buffer before AWS temporary credentials are regenerated. After 50 minutes, you receive a
transfer failure.

218

http://docs.aws.amazon.com/AWSAndroidSDK/latest/javadoc/com/amazonaws/services/s3/AmazonS3Client.html
http://docs.aws.amazon.com/AWSAndroidSDK/latest/javadoc/com/amazonaws/mobileconnectors/s3/transferutility/TransferUtility.html

AWS Mobile Developer Guide
User File Storage (Amazon S3)

Android - Kotlin

If you expect your app to perform transfers that take longer than 50 minutes, use AmazonS3Client
instead of TransferUtility.

TransferUtility generates Amazon S3 pre-signed URLs to use for background data transfer.
Using Amazon Cognito Identity, you receive AWS temporary credentials. The credentials are valid for
up to 60 minutes. Generated Amazon S3 pre-signed URLs cannot last longer than that time. Because
of this limitation, the Amazon S3 Transfer Utility enforces 50 minute transfer timeouts, leaving a 10
minute buffer before AWS temporary credentials are regenerated. After 50 minutes, you receive a
transfer failure.

iOS - Swift

If you expect your app to perform transfers that take longer than 50 minutes, use AWSS3 instead of
AWSS3TransferUtility.

AWSS3TransferUtility generates Amazon S3 pre-signed URLs to use for background data
transfer. Using Amazon Cognito Identity, you receive AWS temporary credentials. The credentials
are valid for up to 60 minutes. At the same time, generated S3 pre-signed URLs cannot last longer
than that time. Because of this limitation, the AWSS3TransferUtility enforces 50 minutes transfer
timeout, leaving a 10 minute buffer before AWS temporary credentials are regenerated. After 50
minutes, you receive a transfer failure.

Amazon S3 Pre-Signed URLs: For Background Transfer

If you are working with large file transfers, you may want to perform uploads and downloads in the
background. To do this, you need to create a background session using NSURLSession and then transfer
your objects using pre-signed URLs.

The following sections describe pre-signed S3 URLs. To learn more about NSURLSession, see Using
NSURLSession.

Pre-Signed URLs

By default, all Amazon S3 resources are private. If you want your users to have access to Amazon S3
buckets or objects, you can assign appropriate permissions with an |AM policy.

Alternatively, you can use pre-signed URLs to give your users access to Amazon S3 objects. A pre-signed
URL provides access to an object without requiring AWS security credentials or permissions.

When you create a pre-signed URL, you must provide your security credentials, specify a bucket name,
an object key, an HTTP method, and an expiration date and time. The pre-signed URL is valid only for the
specified duration.

Build a Pre-Signed URL

The following example shows how to build a pre-signed URL for an Amazon S3 download in the
background.

iOS - Swift

AWSS3PreSignedURLBuilder.default().getPreSignedURL(getPreSignedURLRequest).continueWith
{ (task:AWSTask<NSURL>) -> Any? in
if let error = task.error as? NSError {
print("Error: \(error)")
return nil

}

let presignedURL = task.result
print("Download presignedURL is: \(presignedURL)")

219

http://docs.aws.amazon.com/AWSAndroidSDK/latest/javadoc/com/amazonaws/services/s3/AmazonS3Client.html
http://docs.aws.amazon.com/AWSAndroidSDK/latest/javadoc/com/amazonaws/mobileconnectors/s3/transferutility/TransferUtility.html
http://docs.aws.amazon.com/AWSiOSSDK/latest/Classes/AWSS3.html
http://docs.aws.amazon.com/AWSiOSSDK/latest/Classes/AWSS3TransferUtility.html
https://developer.apple.com/library/ios/documentation/Cocoa/Conceptual/URLLoadingSystem/Articles/UsingNSURLSession.html
https://developer.apple.com/library/ios/documentation/Cocoa/Conceptual/URLLoadingSystem/Articles/UsingNSURLSession.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/PoliciesOverview.html

AWS Mobile Developer Guide
User File Storage (Amazon S3)

let request = URLRequest(url: presignedURL as! URL)

let downloadTask: URLSessionDownloadTask = URLSession.shared.downloadTask(with:
request)

downloadTask.resume()

return nil

iOS - Objective-C

AWSS3GetPreSignedURLRequest *getPreSignedURLRequest = [AWSS3GetPreSignedURLRequest
new];

getPreSignedURLRequest.bucket = @"myBucket";

getPreSignedURLRequest.key = @"myImage.jpg";
getPreSignedURLRequest.HTTPMethod = AWSHTTPMethodGET;
getPreSignedURLRequest.expires = [NSDate dateWithTimeIntervalSinceNow:3600];

[[[AWSS3PreSignedURLBuilder defaultS3PreSignedURLBuilder]
getPreSignedURL:getPreSignedURLRequest]
continueWithBlock:Aid(AWSTask *task) {

if (task.error) {
NSLog(@"Error: %@",task.error);
} else {

NSURL *presignedURL = task.result;
NSLog(@"download presignedURL is: \n%@", presignedURL);

NSURLRequest *request = [NSURLRequest requestWithURL:presignedURL];
self.downloadTask = [self.session downloadTaskWithRequest:request];
//downloadTask is an instance of NSURLSessionDownloadTask.
//session is an instance of NSURLSession.

[self.downloadTask resume];

}

return nil;

1

The preceding example uses GET as the HTTP method: AWSHTTPMethodGET. For an upload request to
Amazon S3, we would need to use a PUT method and also specify a content type.

iOS - Swift
getPreSignedURLRequest.httpMethod = .PUT
let fileContentTypeStr = "text/plain"

getPreSignedURLRequest.contentType = fileContentTypeStr

iOS - Objective-C

getPreSignedURLRequest.HTTPMethod = AWSHTTPMethodPUT;
NSString *fileContentTypeStr = @"text/plain";
getPreSignedURLRequest.contentType = fileContentTypeStr;

Here's an example of building a pre-signed URL for a background upload to S3.

iOS - Swift

let getPreSignedURLRequest = AWSS3GetPreSignedURLRequest()

220

AWS Mobile Developer Guide
User File Storage (Amazon S3)

i0S

getPreSignedURLRequest.bucket = "myBucket"
getPreSignedURLRequest.key = "myFile.txt"
getPreSignedURLRequest.httpMethod = .PUT
getPreSignedURLRequest.expires = Date(timeIntervalSinceNow: 3600)

//Important: set contentType for a PUT request.
let fileContentTypeStr = "text/plain"
getPreSignedURLRequest.contentType = fileContentTypeStr

AWSS3PreSignedURLBuilder.default().getPreSignedURL(getPreSignedURLRequest).continueWith
{ (task:AWSTask<NSURL>) -> Any? in
if let error = task.error as? NSError {
print("Error: \(error)")
return nil

}

let presignedURL = task.result
print("Download presignedURL is: \(presignedURL)")

var request = URLRequest(url: presignedURL as! URL)

request.cachePolicy = .reloadIgnoringLocalCacheData

request.httpMethod = "PUT"

request.setValue(fileContentTypeStr, forHTTPHeaderField: "Content-Type")

let uploadTask: URLSessionTask = URLSession.shared.uploadTask(with: request,
fromFile: URL(fileURLWithPath: "your/file/path/myFile.txt"))

uploadTask.resume()

return nil

- Objective-C

AWSS3GetPreSignedURLRequest *getPreSignedURLRequest = [AWSS3GetPreSignedURLRequest
new]j;

getPreSignedURLRequest.bucket = @"myBucket";

getPreSignedURLRequest.key = @"myFile";

getPreSignedURLRequest.HTTPMethod = AWSHTTPMethodPUT;
getPreSignedURLRequest.expires = [NSDate dateWithTimeIntervalSinceNow:3600];

//Important: set contentType for a PUT request.
NSString *fileContentTypeStr = @"text/plain";
getPreSignedURLRequest.contentType = fileContentTypeStr;

[[[AWSS3PreSignedURLBuilder defaultS3PreSignedURLBuilder]
getPreSignedURL:getPreSignedURLRequest]
continueWithBlock:Aid(AWSTask *task) {
if (task.error) {
NSLog(@"Error: %@",task.error);
} else {
NSURL *presignedURL = task.result;
NSLog(@"upload presignedURL is: \n%@", presignedURL);

NSMutableURLRequest *request = [NSMutableURLRequest
requestWithURL:presignedURL];

request.cachePolicy = NSURLRequestReloadIgnoringLocalCacheData;

[request setHTTPMethod:@"PUT"];

[request setValue:fileContentTypeStr forHTTPHeaderField:@"Content-Type"];

self.uploadTask = [self.session uploadTaskWithRequest:request
fromFile:self.uploadFileURL];

//uploadTask is an instance of NSURLSessionDownloadTask.

//session is an instance of NSURLSession.

[self.uploadTask resume];

221

AWS Mobile Developer Guide
User File Storage (Amazon S3)

return nil;

1

Additional Resources

« Amazon Simple Storage Service Getting Started Guide
» Amazon Simple Storage Service APl Reference
» Amazon Simple Storage Service Developer Guide

Amazon S3 Server-Side Encryption Support in iOS

The AWS Mobile SDK for iOS supports server-side encryption of Amazon S3 data. To learn more about
server-side encryption, see PUT Object.

The following properties are available to configure the encryption:

o SSECustomerAlgorithm

o SSECustomerKey

o SSECustomerKeyMD5

o AWSS3ServerSideEncryption

To use these properties, import the AWSSS3Model with the following statement.

iOS - Swift

import AWSS3

iOS - Objective-C

#import <AWSS3/AWSS3.h>

SSECustomerAlgorithmis a property of AWSS3ReplicateObjectOutput. If server-side encryption
with a customer-provided encryption key was requested, the response will include this header, which
confirms the encryption algorithm that was used. Currently, the only valid option is AES256. You can
access SSECustomerAlgorithm as follows.

iOS - Swift

let replicateObjectOutput = AWSS3ReplicateObjectOutput()
replicateObjectOutput?.sseCustomerAlgorithm = "mySseCustomerAlgorithm

iOS - Objective-C

AWSS3ReplicateObjectOutput *replicateObjectOutput = [AWSS3ReplicateObjectOutput new];
replicateObjectOutput.SSECustomerAlgorithm = @"mySseCustomerAlgorithm";

SSECustomerKey, a property of AWSS3UploadPartRequest, specifies the customer-provided
encryption key for Amazon S3 to use to encrypting data. This value is used to store the object, and is
then discarded; Amazon doesn't store the encryption key. The key must be appropriate for use with the
algorithm specified in the x-amz-server-side-encryption-customer-algorithm header. This

222

http://docs.aws.amazon.com/AmazonS3/latest/gsg/GetStartedWithS3.html
http://docs.aws.amazon.com/AmazonS3/latest/API/Welcome.html
http://docs.aws.amazon.com/AmazonS3/latest/dev/Welcome.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectPUT.html
http://docs.aws.amazon.com/AWSiOSSDK/latest/Classes/AWSS3ReplicateObjectOutput.html#//api/name/SSECustomerAlgorithm
http://docs.aws.amazon.com/AWSiOSSDK/latest/Classes/AWSS3UploadPartRequest.html#//api/name/SSECustomerKey
http://docs.aws.amazon.com/AWSiOSSDK/latest/Classes/AWSS3PutObjectOutput.html#//api/name/SSECustomerKeyMD5
http://docs.aws.amazon.com/AWSiOSSDK/latest/Constants/AWSS3ServerSideEncryption.html

AWS Mobile Developer Guide
User File Storage (Amazon S3)

must be the same encryption key specified in the request to initiate a multipart upload. You can access
SSECustomerKey as follows.

iOS - Swift

let uploadPartRequest = AWSS3UploadPartRequest()
uploadPartRequest?.sseCustomerKey = "customerProvidedEncryptionKey"

iOS - Objective-C

AWSS3UploadPartRequest *uploadPartRequest = [AWSS3UploadPartRequest new];
uploadPartRequest.SSECustomerKey = @"customerProvidedEncryptionKey";

SSECustomerKeyMD5 is a property of AWSS3PutObjectOutput. If server-side encryption with a
customer-provided encryption key is requested, the response will include this header. The response
provides round trip message integrity verification of the customer-provided encryption key. You can
access SSECustomerKeyMD5 as follows.

iOS - Swift

let objectOutput = AWSS3PutObjectOutput()
// Access objectOutput?.sseCustomerKeyMD5

iOS - Objective-C

AWSS3PutObjectOutput *objectOutput = [AWSS3PutObjectOutput new];
//Access objectOutput.SSECustomerKeyMD5

AWSS3ServerSideEncryption represents the encryption algorithm for storing an object in Amazon
S3. You can access it as follows.

iOS - Swift

let objectOutput = AWSS3PutObjectOutput()
// Access objectOutput?.sseCustomerKeyMD5

iOS - Objective-C

AWSS3ReplicateObjectOutput *replicateObjectOutput = [AWSS3ReplicateObjectOutput new];
// Access replicateObjectOutput.serverSideEncryption ...

Additional Resources

« Amazon Simple Storage Service Getting Started Guide
« Amazon Simple Storage Service API Reference
« Amazon Simple Storage Service Developer Guide

iOS: Amazon S3 TransferManager for iOS

Just Getting Started? Use streamlined steps (p. 66) to install the SDK
and integrate Amazon S3.

223

http://docs.aws.amazon.com/AmazonS3/latest/gsg/GetStartedWithS3.html
http://docs.aws.amazon.com/AmazonS3/latest/API/Welcome.html
http://docs.aws.amazon.com/AmazonS3/latest/dev/Welcome.html

AWS Mobile Developer Guide
User File Storage (Amazon S3)

Or, use the contents of this page if your app will integrate existing AWS services.

Topics
o Setup (p. 224)
« Pause, Resume, and Cancel Object Transfers (p. 228)
« Track Progress (p. 231)
« Multipart Upload (p. 231)
« Additional Resources (p. 222)

Amazon Simple Storage Service (S3)

Amazon Simple Storage Service (S3) provides secure, durable, highly-scalable object storage in the
cloud. Using the AWS Mobile SDK for iOS, you can directly access Amazon S3 from your mobile app. For
information about Amazon S3 regional availability, see AWS Service Region Availability.

TransferManager Features

Amazon S3 TransferManager class makes it easy to upload files to and download files from Amazon S3
while optimizing for performance and reliability. It hides the complexity of transferring files behind a
simple API.

Whenever possible, uploads are broken into multiple pieces, so that several pieces are sent in parallel
to provide better throughput. This approach enables more robust transfers, since an 1/O error in

an individual piece result in the SDK retransmitting only the faulty piece, not the entire transfer.
TransferManager provides simple APIs to pause, resume, and cancel file transfers.

The following sections provide a step-by-step guide for getting started with Amazon S3 using the
TransferManager.

You can also try out the Amazon S3 sample available in the AWSLabs GitHub repository.
<admonition>
<title>Should | Use TransferManager or TransferUtility?</title>

To choose which API best suits your needs, see manager-or-utility.
</admonition>

Setup
To set your project up to use the TransferManager class, take the steps below.
1. Setup the SDK, Credentials and Services

Follow the steps in How to Integrate Your Existing Bucket (p. 182) to install the AWS Mobile SDK for
iOS and configure AWS credentials and permissions.

2. Import the SDK Amazon S3 APIs
Add the following import statements to your Xcode project.

iOS - Swift

import AWSS3

iOS - Objective-C

#import <AWSS3/AWSS3.h>

224

https://aws.amazon.com/s3/
https://aws.amazon.com/about-aws/global-infrastructure/regional-product-services/
https://github.com/awslabs/aws-sdk-ios-samples/tree/master/S3TransferManager-Sample

AWS Mobile Developer Guide
User File Storage (Amazon S3)

3. Create the TransferManager Client
Add the following code to create an AWSS3TransferManager client.

iOS - Swift

let transferManager = AWSS3TransferManager.default()

iOS - Objective-C

AWSS3TransferManager *transferManager = [AWSS3TransferManager
defaultS3TransferManager];

The AWSS3TransferManager class is an entry point to this SDK's high-level Amazon S3 APlIs.
Transfer an Object
In this section:

Downloading a file from and uploading a file to a bucket, use the same coding pattern. An important
difference is that download: does not succeed until the download is complete, blocking any flow that
depends on that success. Upload returns immediately and can therefore be safely called on the main
thread.

The steps to call TransferManager for a transfer are as follows.
1. Create an AWSS3TransferManagerDownloadRequest
The following code illustrates the three actions needed to create a download request:

« Create a destination/source location for the file. In this example, this is called downloadingFileURL
/ uploadingFileURL.

« Construct a request object using AWSS3TransferManagerDownloadRequest.

« Set three properties of the request object: the bucket name; the key (the name of the object
in the bucket); and the download destination / upload source downloadingFileURL /
uploadingFileURL.

Download

iOS - Swift

let downloadingFileURL = URL(fileURLWithPath:
NSTemporaryDirectory()).appendingPathComponent("myImage.jpg")

let downloadRequest = AWSS3TransferManagerDownloadRequest()
downloadRequest.bucket = "myBucket"

downloadRequest.key = "myImage.jpg"
downloadRequest.downloadingFileURL = downloadingFileURL

iOS - Objective-C

NSString *downloadingFilePath = [NSTemporaryDirectory()
stringByAppendingPathComponent:@"myImage.jpg"];
NSURL *downloadingFileURL = [NSURL fileURLWithPath:downloadingFilePath];

AWSS3TransferManagerDownloadRequest *downloadRequest =
[AWSS3TransferManagerDownloadRequest new];

225

AWS Mobile Developer Guide
User File Storage (Amazon S3)

downloadRequest.bucket = @"myBucket";
downloadRequest.key = @"myImage.jpg";
downloadRequest.downloadingFileURL = downloadingFileURL;

Upload

iOS - Swift

let uploadingFileURL = URL(fileURLWithPath: "your/file/path/myTestFile.txt")
let uploadRequest = AWSS3TransferManagerUploadRequest()
uploadRequest.bucket = "myBucket"

uploadRequest.key = "myTestFile.txt"
uploadRequest.body = uploadingFileURL

iOS - Objective-C

NSURL *uploadingFileURL = [NSURL fileURLWithPath: @"your/file/path/myTestFile.txt"];

AWSS3TransferManagerUploadRequest *uploadRequest = [AWSS3TransferManagerUploadRequest
new];

uploadRequest.bucket = @"myBucket";
uploadRequest.key = @"myTestFile.txt";
uploadRequest.body = uploadingFileURL;

2. Pass the Request to the download: Method

Use the following code to pass the request to the download: / upload:" method of the

" “TransferManager " client. The methods are asynchronous and returns an AWSTask object. Use a
continueWith block to handle the method result. For more information about AWSTask, see Working with
Asynchronous Tasks.

Download

iOS - Swift

transferManager.download(downloadRequest).continueWith(executor:
AWSExecutor.mainThread(), block: { (task:AWSTask<AnyObject>) -> Any? in

if let error = task.error as? NSError {
if error.domain == AWSS3TransferManagerErrorDomain, let code =
AWSS3TransferManagerErrorType(rawValue: error.code) {
switch code {
case .cancelled, .paused:
break
default:
print("Error downloading: \(downloadRequest.key) Error: \(error)")
}
} else {
print("Error downloading: \(downloadRequest.key) Error: \(error)")
}
return nil
}
print("Download complete for: \(downloadRequest.key)")
let downloadOutput = task.result
return nil

226

AWS Mobile Developer Guide
User File Storage (Amazon S3)

»

iOS - Objective-C

[[transferManager download:downloadRequest] continueWithExecutor:[AWSExecutor
mainThreadExecutor]
withBlock:Aid(AWSTask *task) {
if (task.error){
if ([task.error.domain isEqualToString:AWSS3TransferManagerErrorDomain]) {
switch (task.error.code) {
case AWSS3TransferManagerErrorCancelled:
case AWSS3TransferManagerErrorPaused:

break;
default:
NSLog(@"Error: %@", task.error);
break;
¥
} else {

NSLog(@"Error: %@", task.error);

}

if (task.result) {
AWSS3TransferManagerDownloadOutput *downloadOutput = task.result;

}

return nil;

1;

Upload
iOS - Swift

transferManager.upload(uploadRequest).continueWith(executor: AWSExecutor.mainThread(),
block: { (task:AWSTask<AnyObject>) -> Any? in

if let error = task.error as? NSError {
if error.domain == AWSS3TransferManagerErrorDomain, let code =
AWSS3TransferManagerErrorType(rawValue: error.code) {
switch code {
case .cancelled, .paused:
break
default:
print("Error uploading: \(uploadRequest.key) Error: \(error)")
}
} else {
print("Error uploading: \(uploadRequest.key) Error: \(error)")

}

return nil

}

let uploadOutput = task.result
print("Upload complete for: \(uploadRequest.key)")
return nil

iy

iOS - Objective-C

[[transferManager upload:uploadRequest] continueWithExecutor:[AWSExecutor

mainThreadExecutor]
withBlock:Aid(AWSTask *task) {

227

AWS Mobile Developer Guide
User File Storage (Amazon S3)

if (task.error) {
if ([task.error.domain isEqualToString:AWSS3TransferManagerErrorDomain]) {
switch (task.error.code) {
case AWSS3TransferManagerErrorCancelled:
case AWSS3TransferManagerErrorPaused:

break;
default:
NSLog(@"Error: %@", task.error);
break;
}
} else {

// Unknown error.
NSLog(@"Error: %@", task.error);

}

if (task.result) {
AWSS3TransferManagerUploadOutput *uploadOutput = task.result;
// The file uploaded successfully.

}

return nil;

1

3. Displaying a Downloaded Image in an UlimageView

The use of download: in this example is executed on the main thread. The following code illustrates
displaying such an image in a UllmageView configured in your project .

Note that it can only succeed after download of the file it displays has completed.

iOS - Swift

self.imageView.image = UIImage(contentsOfFile: downloadingFileURL.path)

iOS - Objective-C

self.imageView.image = [UIImage imageWithContentsOfFile:downloadingFilePath];

Pause, Resume, and Cancel Object Transfers
In this section:

Topics
« Use continueWith Block to Handle Results (p. 229)
« Pause a Transfer (p. 229)
o Resume a Transfer (p. 229)
« Cancel a Transfer (p. 230)
o Pause All Transfers (p. 230)
« Resume All Transfers (p. 230)
o Cancel All Transfers (p. 230)

The TransferManager supports pause, resume, and cancel operations for both uploads and downloads.
The pause, cancel, resumeAll, cancelAll, pauseAll, upload:, and download: operations all return instances of
AWSTask. Use these methods with a continueWith block: to handle the returns of these operations.

228

AWS Mobile Developer Guide
User File Storage (Amazon S3)

Use continueWith Block to Handle Results
The following code illustrates using continueWith block: when calling the pause method.

iOS - Swift

uploadRequest.pause().continueWith(block: { (task:AWSTask<AnyObject>) -> Any? in
if let error = task.error as? NSError {
print("Error: \(error)")
return nil

}

// Upload has been paused.
return nil

H

iOS - Objective-C

[[self.uploadRequest pause] continueWithBlock:”*id(AWSTask *task) {
if (task.error) {
NSLog(@"Error: %@",task.error);
} else {

}

// Upload has been paused.
return nil;

1

For brevity, the following examples omit the continueWithBlock.
Pause a Transfer
To pause an object transfer, call pause on the request object.

iOS - Swift

uploadRequest.pause()
downloadRequest.pause()

iOS - Objective-C

[uploadRequest pause];
[downloadRequest pause];

Resume a Transfer
To resume a transfer, call upload or download and pass in the paused request object.

iOS - Swift

transferManager.upload(uploadRequest)
transferManager.download(downloadRequest)

iOS - Objective-C

[transferManager upload:uploadRequest];

229

AWS Mobile Developer Guide
User File Storage (Amazon S3)

[transferManager download:downloadRequest];

Cancel a Transfer
To cancel a transfer, call cancel on the upload or download request.

iOS - Swift

uploadRequest.cancel()
downloadRequest.cancel()

iOS - Objective-C

[uploadRequest cancel];
[downloadRequest cancel];

Pause All Transfers
To pause all of the current upload and download requests, call pauseAll on the TransferManager.

iOS - Swift

transferManager.pauseAll()

iOS - Objective-C

[transferManager pauseAll];

Resume All Transfers

To resume all of the current upload and download requests, call resumeAll on the TransferManager
passing an AWSS3 " “TransferManager ' * ResumeAllBlock, which is a closure that takes AWSRequest as a
parameter, and can be used to reset the progress blocks for the requests.

iOS - Swift

transferManager.resumeAll({ (request:AWSRequest?) in
// All paused requests have resumed.

)

iOS - Objective-C

[transferManager resumeAll:”(AWSRequest *request) {
// All paused requests have resumed.

1

Cancel All Transfers
To cancel all upload and download requests, call cancelAll on the TransferManager.

iOS - Swift

transferManager.cancelAll()

230

AWS Mobile Developer Guide
User File Storage (Amazon S3)

iOS - Objective-C

[transferManager cancelAll];

Track Progress

Using the uploadProgress and downloadProgress blocks, you can track the progress of object transfers.
These blocks work in conjunction with the Grand Central Dispatch dispatch_async function, as shown in

the following examples.
Upload Progress
Track the progress of an upload.

iOS - Swift

uploadRequest.uploadProgress = {(bytesSent:
totalBytesExpectedToSend:
DispatchQueue.main.async(execute:
//Update progress
D)

Int64) -> Void in
{() -> Void in

Int64, totalBytesSent: Inté64,

iOS - Objective-C

uploadRequest.uploadProgress =
totalBytesExpectedToSend){

//Update progress
)i

A(int64_t bytesSent,

dispatch_async(dispatch_get_main_queue(),

int64_t totalBytesSent, int64_t

~

Download Progress
Track the progress of a download.

iOS - Swift

downloadRequest.downloadProgress =
totalBytesExpectedToSend:
DispatchQueue.main.async(execute:
//Update progress
D

{(bytesSent:
Int64) -> Void in
{() -> Void in

Int64, totalBytesSent: Inté64,

iOS - Objective-C

downloadRequest.downloadProgress =
int64_t totalBytesExpectedToWrite){
dispatch_async(dispatch_get_main_queue(),
//Update progress
i

A(int64_t bytesWritten,

~

int64_t totalBytesWritten,

Multipart Upload

Amazon S3 provides a multipart upload feature to upload a single object as a set of parts. Each partis a
contiguous portion of the object's data. The object parts are uploaded independently and in any order. If

231

AWS Mobile Developer Guide
NoSQL Database (Amazon DynamoDB)

transmission of any part fails, you can retransmit that part without affecting other parts. After all parts
of the object are uploaded, Amazon S3 assembles these parts and creates the object.

In the AWS Mobile SDK for iOS, the TransferManager handles multipart upload for you. The minimum
part size for a multipart upload is 5MB.

Additional Resources

« Amazon Simple Storage Service Getting Started Guide
« Amazon Simple Storage Service APl Reference

« Amazon Simple Storage Service Developer Guide
How To: NoSQL Database with Amazon DynamoDB

Just Getting Started? Use streamlined steps (p. 54) to install the SDK
and integrate Amazon DynamoDB.

This section provides information on the steps for achieving specific tasks for integrating your
DynamoDB into your Android and iOS apps.
Topics

« Integrate Your Existing NoSQL Table (p. 232)

« i0S: Amazon DynamoDB Object Mapper API (p. 248)

« i0S: Amazon DynamoDB Low-level Client (p. 257)

Integrate Your Existing NoSQL Table

Just Getting Started? Use streamlined steps (p. 54) to install the SDK
and integrate features.

The Get Started (p. 54) section of this guide allows you to create new resources and complete the
steps described on this page in minutes. If you want to import existing resources or create them from
scratch, the contents of this page will walk you through the steps you need.

The following steps and examples are based on a simple bookstore app. The app tracks the books that
are available in the bookstore using an Amazon DynamoDB table.

Set up Your Backend

To manually configure an Amazon DynamoDB table that you can integrate into your mobile app, use the
following steps.
Topics

o Create an New Table and Index (p. 233)

« Set Up an Identity Pool (p. 233)

« Set Permissions (p. 233)

o Apply Permissions (p. 234)

232

http://docs.aws.amazon.com/AmazonS3/latest/gsg/GetStartedWithS3.html
http://docs.aws.amazon.com/AmazonS3/latest/API/Welcome.html
http://docs.aws.amazon.com/AmazonS3/latest/dev/Welcome.html

AWS Mobile Developer Guide
NoSQL Database (Amazon DynamoDB)

Create an New Table and Index

« If you already have an Amazon DynamoDB table and know its region, you can skip to Set Up an
Identity Pool (p. 233).

To create the Books table:

. Sign in to the Amazon DynamoDB Console.

. Choose Create Table.

. Type Books as the name of the table.

. Enter ISBN in the Partition key field of the Primary key with String as their type.

. Check the Add sort key box , then type Category in the provided field and select String as the type.
. Clear the Use default settings checkbox and choose + Add Index.

. In the Add Index dialog type Author with String as the type.

0O N O UL A WIN =

. Check the Add sort key checkbox and enter Title as the sort key value, with String as its type.

9. Leave the other values at their defaults. Choose Add index to add the Author-Title-index index.
10Set the Minimum provisioned capacity for read to 10, and for write to 5.

11Choose Create.Amazon DynamoDB will create your database.

12Refresh the console and choose your Books table from the list of tables.

130pen the Overview tab and copy or note the Amazon Resource Name (ARN). You need this for the
next procedure.

Set Up an Identity Pool

To give your users permissions to access your table you'll need an identity pool from Amazon

Cognito. That pool has two default IAM roles, one for guest (unauthenticated), and one for signed-in
(authenticated) users. The policies you design and attach to the IAM roles determine what each type of
user can and cannot do.

Import an existing pool or create a new pool (p. 147) for your app.
Set Permissions
Attach the following IAM policy to the unauthenticated role for your identity pool. It allows the user

to perform the actions on two resources (a table and an index) identified by the ARN of your Amazon
DynamoDB table.

"Statement": [{

"Effect": "Allow",

"Action": [
"dynamodb:DeleteItem",
"dynamodb:GetItem",
"dynamodb:PutItem",
"dynamodb:Scan",
"dynamodb:Query",
"dynamodb:UpdateItem",
"dynamodb:BatchWriteItem"

]I

"Resource": [
"arn:aws:dynamodb:us-west-2:123456789012:table/Books",
"arn:aws:dynamodb:us-west-2:123456789012:table/Books/index/*"

iy

233

https://console.aws.amazon.com/dynamodb/home
http://docs.aws.amazon.com/cognito/latest/developerguide/identity-pools.html
http://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html

AWS Mobile Developer Guide
NoSQL Database (Amazon DynamoDB)

Apply Permissions

Apply this policy to the unauthenticated role assigned to your Amazon Cognito identity pool, replacing
the Resource values with the correct ARN for the Amazon DynamoDB table:

. Sign in to the IAM console.

. Choose Roles and then choose the "Unauth" role that Amazon Cognito created for you.

. Choose Attach Role Policy.

. Choose Custom Policy and then Choose Select.

U A W N =

. Type a name for your policy and paste in the policy document shown above, replacing the Resource
values with the ARNs for your table and index. (You can retrieve the table ARN from the Details tab of
the database; then append /index/* to obtain the value for the index ARN.

6. Choose Apply Policy.

Connect to Your Backend

Topics
« Create Your AWS Configuration File (p. 234)
o Add the AWS Config File (p. 235)
o Add the SDK to your App (p. 149)
« Add Data Models to Your App (p. 240)

Create Your AWS Configuration File

Your app is connected to your AWS resources using an awsconfiguration. json file which contains
the endpoints for the services you use.

1. Create a file with name awsconfiguration. json with the following contents:

"Version": "1.0",
"CredentialsProvider": {
"CognitoIdentity": {
"Default": {
"PoolId": "COGNITO-IDENTITY-POOL-ID",
"Region": "COGNITO-IDENTITY-POOL-REGION"
}
}
}l
"IdentityManager": {
"Default": {}
}l
"DynamoDBObjectMapper": {
"Default": {
"Region": "DYNAMODB-REGION"
}
}
}

2. Make the following changes to the configuration file.
» Replace the DYNAMODB-REGION with the region the table was created in.

Need to find your table's region? Go to Amazon DynamoDB Console. and choose
the Overview tab for your table. The Amazon

234

https://console.aws.amazon.com/iam
https://console.aws.amazon.com/dynamodb

AWS Mobile Developer Guide
NoSQL Database (Amazon DynamoDB)

Resource Name (ARN) item shows the table's
ID, which contains its region.

For example, if your pool ID
iSarn:aws:dynamodb:us—
east-1:012345678901:table/nosqgltest-
mobilehub-012345678-Books, then your the
table's region value would be us-east-1.

The configuration file value you want is in
the form of: "Region": "REGION-OF-YOU-
DYNAMODB-ARN". For this example:

"Region": "us-east-1"

» Replace the COGNITO-IDENTITY-POOL-ID with the identity pool ID.

» Replace the COGNITO-IDENTITY-POOL-REGION with the region the identity pool was created in.

Need to find your pool's ID and region?

Add the AWS Config File

Go to Amazon Cognito Console and choose
Manage Federated Identities, then choose your
pool and choose Edit identity pool. Copy the
value of Identity pool ID.

Insert this region value into the following
form to create the value you need for this
integration.

"Region": "REGION-PREFIX-OF-YOUR-POOL-
ID".

For example, if your pool ID is us-
east-1:01234567-yyyy-0123-
xxxx-012345678901, then your integration
region value would be:

"Region": "us-east-1"

To make the connection between your app and your backend services, add the configuration file.

Android - Java

In the Android Studio Project Navigator, right-click your app's res folder, and then choose New >
Directory. Type raw as the directory name and then choose OK.

235

https://console.aws.amazon.com/cognito

AWS Mobile Developer Guide
NoSQL Database (Amazon DynamoDB)

® Android Studio File Edit View Navigate Code Analyze Refactor Build Run Tools VCS Window

L] L] « MyApplication [~/Downloads/MyApplication] - .../app/src/mainfjava/com/dzmedia/android/m
el 0 ¢] L] Ciapp ~] L
. MyApplication = _app src main res
i Android * €3 s e 1T o activity_mainxml € MainActivity java
E' app package com.dzmedia.android.myapplication;
= manifests 2
h java ¢ Kotlin File/Class
L . , Sample Data Directory lvit
f;: (3 Gradle Scripts Link C++ Project with Gradle 2 File o
g Cut 38X =, Scratch File 08N lestate) {
& Copy 3%C Directory
5 Copy Path- _Q&@C Image Asset
] Copy Relative Path {#C
s N Vector Asset
a ¥ Paste BV
‘I: o Gradle Kotlin DSL Build Script
® Find in Path... T ®F e a2t em e U

Drag the awsconfiguration. json you created into the res/raw folder. Android gives a resource
ID to any arbitrary file placed in this folder, making it easy to reference in the app.

Android - Kotlin

In the Android Studio Project Navigator, right-click your app's res folder, and then choose New >
Directory. Type raw as the directory name and then choose OK.

® Android Studio File Edit View Navigate Code Analyze Refactor Build Run Tools VCS Window

® [] - MyApplication [~/Downloads/MyApplication] - .../app/src/main/java/com/dzmedia/android/m
(O] IR 4 v ¢ Chapp ~] L
. MyApplication ' _app src main res |
i Androld v @ = - 1- o activity_mainxml € MainActivity java
E app package com,dzmedia.android.myapplication;
= manifests 2
n java x Kotlin File/Class
res)) Sample Data Directory hvit
S (& Gradle Scripts Link C++ Project with Gradle 2 File vity {
g Cut 36X = Scratch File 08N lestate) {
& Copy e Directory
5 Copy Pathk _QS@C Image Asset
[Copy Relative Path O#C
5 N Vector Asset
a2 W Paste ¥’V
",': L Gradle Kotlin DSL Build Script
9 Find in Path... G %F e Ty et T

Drag the awsconfiguration. json you created into the res/raw folder. Android gives a resource
ID to any arbitrary file placed in this folder, making it easy to reference in the app.

iOS - Swift
Drag the awsconfiguration. json into the folder containing your Info.plist file in your Xcode
project. Choose Copy items and Create groups in the options dialog.

Add the SDK to your App

Use the following steps to add AWS Mobile NoSQL Database to your app.

Android - Java

1. Set up AWS Mobile SDK components with the following Set Up Your Backend (p. 2) steps.
a. app/build.gradle must contain:

236

AWS Mobile Developer Guide
NoSQL Database (Amazon DynamoDB)

dependencies{
// Amazon Cognito dependencies for user access to AWS resources
implementation ('com.amazonaws:aws-android-sdk-mobile-client:2.6.+@aar"')

{ transitive = true }

// AmazonDynamoDB dependencies for NoSQL Database
implementation 'com.amazonaws:aws-android-sdk-ddb-mapper:2.6.+"'

// other dependencies

b. Add the following permissions to AndroidManifest.xml.

<uses-permission android:name="android.permission.INTERNET"/>
<uses-permission android:name="android.permission.ACCESS_NETWORK_STATE"/>

. Create an AWSDynamoDBMapper client in the call back of your call to instantiate
AWSMobilecClient. This will ensure that the AWS credentials needed to connect to Amazon
DynamoDB are available, and is typically in onCreate function of of your start up activity.

import com.amazonaws.mobile.client.AWSMobileClient;
import com.amazonaws.mobile.client.AWSStartupHandler;
import com.amazonaws.mobile.client.AWSStartupResult;

import com.amazonaws.mobileconnectors.dynamodbv2.dynamodbmapper.DynamoDBMapper ;
import com.amazonaws.services.dynamodbv2.AmazonDynamoDBClient;

public class MainActivity extends AppCompatActivity {

// Declare a DynamoDBMapper object
DynamoDBMapper dynamoDBMapper;

@Override

protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.activity_main);

// AWSMobileClient enables AWS user credentials to access your table
AWSMobileClient.getInstance().initialize(this, new AWSStartupHandler() {

@Override
public void onComplete(AWSStartupResult awsStartupResult) {

// Add code to instantiate a AmazonDynamoDBClient
AmazonDynamoDBClient dynamoDBClient = new
AmazonDynamoDBClient(AWSMobileClient.getInstance().getCredentialsProvider());
this.dynamoDBMapper = DynamoDBMapper.builder()
.dynamoDBClient(dynamoDBClient)
.awsConfiguration(
AWSMobileClient.getInstance().getConfiguration())
.build();

}

}) .execute();

// Other functions in onCreate

237

AWS Mobile Developer Guide
NoSQL Database (Amazon DynamoDB)

Important Use Asynchronous Calls to DynamoDB

Since calls to DynamoDB are synchronous,
they don't belong on your Ul thread. Use an
asynchronous method like the Runnable
wrapper to call DynamoDBObjectMapper in a
separate thread.

Runnable runnable = new Runnable() {
public void run() {
//DynamoDB calls go here
}
}i
Thread mythread = new Thread(runnable);
mythread.start();

Android - Kotlin

1. Set up AWS Mobile SDK components with the following Set Up Your Backend (p. 2) steps.

a. app/build.gradle must contain:

dependencies{
// Bmazon Cognito dependencies for user access to AWS resources
implementation ('com.amazonaws:aws-android-sdk-mobile-client:2.6.+@aar"')

{ transitive = true }

// AmazonDynamoDB dependencies for NoSQL Database
implementation 'com.amazonaws:aws-android-sdk-ddb-mapper:2.6.+"'

// other dependencies

b. Add the following permissions to AndroidManifest.xml.

<uses-permission android:name="android.permission.INTERNET"/>
<uses-permission android:name="android.permission.ACCESS_NETWORK_STATE"/>

2. Create an AWSDynamoDBMapper client in the call back of your call to instantiate
AWSMobilecClient. This will ensure that the AWS credentials needed to connect to Amazon
DynamoDB are available, and is typically in onCreate function of of your start up activity.

import com.amazonaws.mobile.client.AWSMobileClient;
import com.amazonaws.mobile.client.AWSStartupHandler;
import com.amazonaws.mobile.client.AWSStartupResult;

import com.amazonaws.mobileconnectors.dynamodbv2.dynamodbmapper.DynamoDBMapper;
import com.amazonaws.services.dynamodbv2.AmazonDynamoDBClient;

class MainActivity : AppCompatActivity() {
var ddbMapper: DynamoDBMapper? = null

override fun onCreate(savedInstanceState: Bundle?) {
super.onCreate(savedInstanceState)
setContentView(R.layout.activity_main)

AWSMobileClient.getInstance().initialize(this, object : AWSStartupHandler() {
override fun onComplete(awsStartupResult: AWSStartupResult) {

238

AWS Mobile Developer Guide
NoSQL Database (Amazon DynamoDB)

val ddbClient =
AmazonDynamoDBClient (AWSMobileClient.getInstance().credentialsProvider)
ddbMapper = DynamoDBMapper.builder()
.dynamoDBClient(ddbClient)
.awsConfiguration(AWSMobileClient.getInstance().configuration)
.build()
}

}) .execute()

// other setup within onCreate()

Important Use Asynchronous Calls to DynamoDB

Since calls to DynamoDB are synchronous,

they don't belong on your Ul thread. Use an
asynchronous method like the thread wrapper
to call DynamoDBObjectMapper in a separate
thread.

thread(start = true) {
// DynamoDB calls go here

}

iOS - Swift

1. Set up AWS Mobile SDK components with the following Set Up Your Backend (p. 2) steps.
a. Add the AWSDynamoDB pod to your Podfile to install the AWS Mobile SDK.

platform :ios, '9.0'

target :'YOUR-APP-NAME' do
use_frameworks!

Enable AWS user credentials
pod 'AWSMobileClient', '~> 2.6.13"'

Connect to NoSQL database tables
pod 'AWSDynamoDB', '~> 2.6.13'

other pods .
end

Run pod install --repo-update before you continue.

If you encounter an error message that begins "[!] Failed to connect to GitHub to
update the CocoaPods/Specs . . ." andyourinternet connectivity is working, you may
need to update openssl and Ruby.

b. Classes that call DynamoDB APIs must use the following import statements:

import AWSCore
import AWSDynamoDB

239

https://stackoverflow.com/questions/38993527/cocoapods-failed-to-connect-to-github-to-update-the-cocoapods-specs-specs-repo/48962041#48962041

AWS Mobile Developer Guide
NoSQL Database (Amazon DynamoDB)

Add Data Models to Your App

To connect your app to your table create a data model object in the following form. In this example, the
model is based on the Books table you created in a previous step. The partition key (hash key) is called
ISBN and the sort key (rangekey) is called category.

Android - Java

In the Android Studio project explorer right-click the folder containing your main activity, and
choose New > Java Class. Type the Name you will use to refer to your data model. In this example
the name would be BooksD0. Add code in the following form.

package com.amazonaws.models.nosql;

import com.amazonaws.mobileconnectors.dynamodbv2.dynamodbmapper.DynamoDBAttribute;
import com.amazonaws.mobileconnectors.dynamodbv2.dynamodbmapper .DynamoDBHashKey;
import com.amazonaws.mobileconnectors.dynamodbv2.dynamodbmapper.DynamoDBIndexHashKey;
import com.amazonaws.mobileconnectors.dynamodbv2.dynamodbmapper.DynamoDBIndexRangeKey;
import com.amazonaws.mobileconnectors.dynamodbv2.dynamodbmapper.DynamoDBRangeKey;
import com.amazonaws.mobileconnectors.dynamodbv2.dynamodbmapper.DynamoDBTable;

import java.util.List;
import java.util.Map;
import java.util.Set;

@DynamoDBTable(tableName = "Books")

public class BooksDO {
private String _isbn;
private String _category;
private String _title;
private String _author;

@DynamoDBHashKey(attributeName = "ISBN")
@DynamoDBAttribute(attributeName = "ISBN")
public String getIsbn() {

return _isbn;

}

public void setIsbn(final String _isbn) {
this._isbn = _isbn;

}

@DynamoDBRangeKey (attributeName = "Category")

@DynamoDBAttribute(attributeName = "Category")

public String getCategory() {
return _category;

}

public void setCategory(final String _category) {
this._category= _category;

}

@DynamoDBIndexHashKey(attributeName = "Author", globalSecondaryIndexName =
"Author")
public String getAuthor() {
return _author;

}
public void setAuthor(final String _author) {
this._author = _author;
}
@DynamoDBIndexRangeKey(attributeName = "Title", globalSecondaryIndexName = "Title")

240

AWS Mobile Developer Guide
NoSQL Database (Amazon DynamoDB)

public String getTitle() {
return _title;

}

public void setTitle(final String _title) {
this._title = _title;
}

Android - Kotlin

In the Android Studio project explorer right-click the folder containing your main activity, and
choose New > Java Class. Type the Name you will use to refer to your data model. In this example
the name would be BooksD0. Add code in the following form. You can also use a data model in the
Java form in a Kotlin project.

package com.amazonaws.models.nosql;

import com.amazonaws.mobileconnectors.dynamodbv2.dynamodbmapper.DynamoDBAttribute;
import com.amazonaws.mobileconnectors.dynamodbv2.dynamodbmapper.DynamoDBHashKey;
import com.amazonaws.mobileconnectors.dynamodbv2.dynamodbmapper.DynamoDBIndexHashKey;
import com.amazonaws.mobileconnectors.dynamodbv2.dynamodbmapper.DynamoDBIndexRangeKey;
import com.amazonaws.mobileconnectors.dynamodbv2.dynamodbmapper.DynamoDBRangeKey;
import com.amazonaws.mobileconnectors.dynamodbv2.dynamodbmapper.DynamoDBTable;

import java.util.List;
import java.util.Map;
import java.util.Set;

@DynamoDBTable(tableName = "Books")

class BooksDO {
@DynamoDBHashKey(attributeName = "ISBN")
@DynamoDBAttribute(attributeName = "ISBN")

var isbn: String? = null

@DynamoDBRangeKey (attributeName = "Category")
@DynamoDBAttribute(attributeName = "Category")
var category: String? = null

@DynamoDBIndexHashKey(attributeName = "Author", globalSecondaryIndexName =
"Author")
var author: String? = null

@DynamoDBIndexRangeKey(attributeName = "Title", globalSecondaryIndexName = "Title")
var title: String? = null
}
iOS - Swift

In the Xcode project explorer, right-click the folder containing your app delegate, and choose New
File > Swift File > Next. Type the name you will use to refer to your data model as the filenam. In
this example the name would be Books. Add code in the following form.

import Foundation
import UIKit
import AWSDynamoDB

class Books: AWSDynamoDBObjectModel, AWSDynamoDBModeling {

@objc var _isbn: String?
@objc var _category: String?

241

AWS Mobile Developer Guide
NoSQL Database (Amazon DynamoDB)

@objc var _author: String?
@objc var _title: String?

class func dynamoDBTableName() -> String {
return "Books"

}

class func hashKeyAttribute() -> String {
return "_isbn"

}

class func rangeKeyAttribute() -> String {
return "_category"

}
override class func jsonKeyPathsByPropertyKey() -> [AnyHashable: Any] {
return [
"_isbn" : "ISBN",
"_category" : "Category",
"_author" : "Author",
"_title" : "Title",

Perform CRUD Operations

The fragments below consume the BooksDO data model class created in a previous step.

Topics
« Create (Save) an Item (p. 60)
« Read (Load) an Item (p. 61)
« Update an Item (p. 62)
o Delete an Item (p. 63)

Create (Save) an Item

Use the following code to create an item in your NoSQL Database table.

Android - Java

public void createBooks() {
final com.amazonaws.models.nosql.BooksDO booksItem = new
com.amazonaws .models.nosql.BooksDO();

booksItem.setIsbn("ISBN1");
booksItem.setAuthor("Frederick Douglas");
booksItem.setTitle("Escape from Slavery");
booksItem.setCategory("History");

new Thread(new Runnable() {
@Override
public void run() {
dynamoDBMapper .save(booksItem);
// Item saved

}
}).start();

242

AWS Mobile Developer Guide
NoSQL Database (Amazon DynamoDB)

Android - Kotlin

fun createBooks() {
val booksItem = BooksDO().apply {

isbn = "ISBN1"

author = "Frederick Douglas"
title = "Escape from Slavery"
category = "History"

}

thread(start = true) {
ddbMapper.save(booksItem)
}

iOS - Swift

func createBooks() {
let dynamoDbObjectMapper = AWSDynamoDBObjectMapper.default()

let booksItem: Books = Books()

booksItem._isbn = "1234"
booksItem._category = "History"
booksItem._author = "Harriet Tubman"
booksItem._title = "My Life"

//Save a new item
dynamoDbObjectMapper.save(booksItem, completionHandler: {
(error: Error?) -> Void in

if let error = error {
print("Amazon DynamoDB Save Error: \(error)")
return

}

print("An item was saved.")

»

Read (Load) an Item

Use the following code to read an item in your NoSQL Database table.

Android - Java

public void readBooks() {
new Thread(new Runnable() {
@Override
public void run() {

com.amazonaws .models.nosql.BooksDO booksItem = dynamoDBMapper.load(
com.amazonaws .models.nosql.BooksDO.class,
"ISBN1", // Partition key (hash key)
"History"); // Sort key (range key)

// Item read

Log.d(LOG_TAG, String.format("Books Item: %s", booksItem.toString()));

}
}).start();

243

AWS Mobile Developer Guide
NoSQL Database (Amazon DynamoDB)

Android - Kotlin

fun readBooks() {
thread(start = true) {
val booksItem = ddbMapper.load(BooksDO::class.java,
"ISBN1", // Partition Key (hash key)
"History") // Sort key (range key)

Log.d(LOG_TAG, "Books Item: $booksItem")

iOS - Swift

func readBooks() {
let dynamoDbObjectMapper = AWSDynamoDBObjectMapper.default()

// Create data object using data model you created
let booksItem: Books = Books();

dynamoDbOb jectMapper.load(
Books.self,
hashKey: "1234",
rangeKey: "Harriet Tubman",
completionHandler: {
(objectModel: AWSDynamoDBObjectModel?, error: Error?) -> Void in
if let error = error {
print("Amazon DynamoDB Read Error: \(error)")
return
}
print("An item was read.")

3

Update an Item

Use the following code to update an item in your NoSQL Database table.

Android - Java

public void updateBooks() {

final com.amazonaws.models.nosql.BooksDO booksItem = new
com.amazonaws .models.nosql.BooksDO();

booksItem.setIsbn("ISBN1");
booksItem.setCategory("History");
booksItem.setAuthor("Frederick M. Douglas");
// booksItem.setTitle("Escape from Slavery");

new Thread(new Runnable() {
@Override
public void run() {

// Using .save(bookItem) with no Title value makes that attribute value
equal null

// The .Savebehavior shown here leaves the existing value as is
dynamoDBMapper .save(booksItem, new
DynamoDBMapperConfig(DynamoDBMapperConfig.SaveBehavior .UPDATE_SKIP_NULL_ATTRIBUTES));

// Item updated

244

AWS Mobile Developer Guide
NoSQL Database (Amazon DynamoDB)

}
}).start();

Android - Kotlin

fun updateBooks() {
val booksItem = BooksDO().apply {

isbn = "ISBN1"
category = "History"
author = "Frederick M. Douglas"

// Do not set title - it will be removed from the item in DynamoDB

}

thread(start = true) {
ddbMapper.save(booksItem,
DynamoDBMapperConfig(DynamoDBMappConfig.SaveBehavior .UPDATE_SKIP_NULL_ATTERIBUTES))

}

iOS - Swift

func updateBooks() {
let dynamoDbObjectMapper = AWSDynamoDBObjectMapper.default()

let booksItem: Books = Books()

booksItem._isbn = "1234"

booksItem._category = "History"
booksItem._author = "Harriet Tubman"
booksItem._title = "The Underground Railroad"

dynamoDbObjectMapper.save(booksItem, completionHandler: {(error: Error?) -> Void in

if let error = error {
print(" Amazon DynamoDB Save Error: \(error)")
return

}

print("An item was updated.")

»

Delete an Item
Use the following code to delete an item in your NoSQL Database table.

Android - Java

public void deleteBooks() {
new Thread(new Runnable() {
@Override
public void run() {

com.amazonaws .models.nosql.BooksDO booksItem = new
com.amazonaws .models.nosql.BooksDO();

booksItem.setIsbn("ISBN1"); //partition key

booksItem.setCategory("History"); //range key

dynamoDBMapper .delete(booksItem);

// Item deleted

245

AWS Mobile Developer Guide
NoSQL Database (Amazon DynamoDB)

}
}).start();

Android - Kotlin

fun deleteBook() {
thread(start = true) {
val booksItem = BooksDO().apply {

isbn = "ISBN1" // Partition key
category = "History" // Range key
}
ddbMapper.delete(booksItem)
}
}
i0S - Swift

func deleteBooks() {
let dynamoDbObjectMapper = AWSDynamoDBObjectMapper.default()

let itemToDelete = Books()
itemToDelete?._isbn = "1234"

itemToDelete?._category = "History"

dynamoDbObjectMapper.remove(itemToDelete!, completionHandler: {(error: Error?) ->

Void in
if let error = error {
print(" Amazon DynamoDB Save Error: \(error)")
return
}
print("An item was deleted.")
D)
}

Perform a Query

A query operation enables you to find items in a table. You must define a query using both the hash key
(partition key) and range key (sort key) attributes of a table. You can filter the results by specifying the
attributes you are looking for. For more information about DynamoDBQueryExpression, see the AWS
Mobile SDK for Android API reference.

The following example code shows querying for books with partition key (hash key) 1sBN and sort key
(range key) Category beginning with History.

Android - Java

public void queryBook() {

new Thread(new Runnable() {
@Override
public int hashCode() {
return super.hashCode();

}

@Override
public void run() {
com.amazonaws .models.nosql.BooksDO book = new
com.amazonaws .models.nosql.BooksDO();
book.setIsbn("ISBN1"); //partition key

246

TheAWSMobileSDKpatternusedforAmazonDynamoDBqueriesmatchesthe`http://docs.aws.amazon.com/AWSAndroidSDK/latest/javadoc/com/amazonaws/mobileconnectors/dynamodbv2/dynamodbmapper/DynamoDBQueryExpression.html
TheAWSMobileSDKpatternusedforAmazonDynamoDBqueriesmatchesthe`http://docs.aws.amazon.com/AWSAndroidSDK/latest/javadoc/com/amazonaws/mobileconnectors/dynamodbv2/dynamodbmapper/DynamoDBQueryExpression.html

AWS Mobile Developer Guide
NoSQL Database (Amazon DynamoDB)

book.setCategory("History"); //range key

Condition rangeKeyCondition = new Condition()
.withComparisonOperator(ComparisonOperator .BEGINS_WITH)
.withAttributevValueList(new AttributevValue().withS("History"));

DynamoDBQueryExpression queryExpression = new DynamoDBQueryExpression()
.withHashKeyValues(book)

.withRangeKeyCondition("Category", rangeKeyCondition)
.withConsistentRead(false);

PaginatedList<BooksDO> result =
dynamoDBMapper.query(com.amazonaws .models.nosqgl.BooksDO.class, queryExpression);

Gson gson = new Gson();
StringBuilder stringBuilder = new StringBuilder();

// Loop through query results

for (int i = 0; i < result.size(); i++) {
String jsonFormOfItem = gson.todson(result.get(i));
stringBuilder.append(jsonFormOfItem + "\n\n");

}

// Add your code here to deal with the data result
Log.d("Query results: ", stringBuilder.toString());

if (result.isEmpty()) {
// There were no items matching your query.
}

}
}).start();

Android - Kotlin

i0S

fun queryBooks() {
thread(start = true) {

val book = BooksDO().apply {
isbn = "ISBN1" // Partition key
category = "History" // Range key

}

val rangeKeyCondition = Condition()
.withComparisonOperator(ComparisionOperator .BEGINS_WITH)
.withAttrbiutevValueList(AttributevValue().withS("History"))

val queryExpression = DynamoDBQUeryExpression()
.withHashKeyValues(book)
.withRangeKeyCondition("Category", rangeKeyCondition)
.withConsistentRead(false)

val result = ddbMapper.query(BooksDO::class.java, queryExpression) as
PaginatedList<BooksDO>

if (result.isEmpty()) {
// There were no items matching your query
} else {
// loop through the result list and process the response

}

- Swift

func queryBooks() {

247

AWS Mobile Developer Guide
NoSQL Database (Amazon DynamoDB)

// 1) Configure the query
let queryExpression = AWSDynamoDBQueryExpression()
queryExpression.keyConditionExpression = "#isbn = :ISBN AND #category = :Category"

queryExpression.expressionAttributeNames = [
"#isbn": "ISBN",
"#category": "Category"

]

queryExpression.expressionAttributevalues = [
":ISBN" : "1234",
":Category" : "History"

]

// 2) Make the query
let dynamoDbObjectMapper = AWSDynamoDBObjectMapper.default()

dynamoDbObjectMapper.query(Books.self, expression: queryExpression) { (output:
AWSDynamoDBPaginatedOutput?, error: Error?) in
if error != nil {
print("The request failed. Error: \(String(describing: error))")

}
if output != nil {
for books in output!.items {
let booksItem = books as? Books
print("\(booksItem!._title!)")
}
}
}
}
Next Steps

« To learn more about IAM policies, see Using IAM.

« To learn more about creating fine-grained access policies for Amazon DynamoDB, see DynamoDB on
Mobile — Part 5: Fine-Grained Access Control.

iOS: Amazon DynamoDB Object Mapper API

Topics
o Overview (p. 13)
o Setup (p. 224)
« Instantiate the Object Mapper API (p. 249)
« CRUD Operations (p. 251)
o Perform a Scan (p. 254)
o Perform a Query (p. 256)
« Additional Resources (p. 222)

Overview

Amazon DynamoDB is a fast, highly scalable, highly available, cost-effective, non-relational database
service. Amazon DynamoDB removes traditional scalability limitations on data storage while maintaining
low latency and predictable performance.

The AWS Mobile SDK for iOS provides both low-level and high-level libraries for working with Amazon
DynamoDB.

248

http://docs.aws.amazon.com/IAM/latest/UserGuide/IAM_Introduction.html
http://aws.amazon.com/blogs/mobile/dynamodb-on-mobile-part-5-fine-grained-access-control/
http://aws.amazon.com/blogs/mobile/dynamodb-on-mobile-part-5-fine-grained-access-control/
https://aws.amazon.com/dynamodb/

AWS Mobile Developer Guide
NoSQL Database (Amazon DynamoDB)

The high-level library described in this section provides Amazon DynamoDB object mapper which lets
you map client-side classes to tables. Working within the data model defined on your client you can write
simple, readable code that stores and retrieves objects in the cloud.

The dynamodb-low-level-client provides useful ways to perform operations like conditional writes and
batch operations.

Setup
To set your project up to use the AWS SDK for iOS dynamoDBOb jectMapper, take the following steps.
Setup the SDK, Credentials, and Services

To integrate dynamoDBObjectMapper into a new app, follow the steps described in Get Started to
install the AWS Mobile SDK for iOS.

For apps that use an SDK version prior to 2.6.0, follow the steps on setup-options-for-aws-sdk-for-ios
to install the AWS Mobile SDK for iOS. Then use the steps on cognito-auth-identity-for-ios-legacy to
configure user credentials, and permissions.

Instantiate the Object Mapper API
In this section:

Topics
o Import the AWSDynamoDB APIs (p. 249)
» Create Amazon DynamoDB Object Mapper Client (p. 249)
« Define a Mapping Class (p. 250)

Import the AWSDynamoDB APIs
Add the following import statement to your project.

iOS - Swift

import AWSDynamoDB

iOS - Objective-C

#import <AWSDynamoDB/AWSDynamoDB.h>

Create Amazon DynamoDB Object Mapper Client

Use the AWSDynamoDBObjectMapper to map a client-side class to your database. The object mapper
supports high-level operations like creating, getting, querying, updating, and deleting records. Create an
object mapper as follows.

iOS - Swift

dynamoDBObjectMapper = AWSDynamoDBObjectMapper.default()

iOS - Objective-C

AWSDynamoDBObjectMapper *dynamoDBObjectMapper = [AWSDynamoDBObjectMapper
defaultDynamoDBObjectMapper];

249

http://docs.aws.amazon.com/aws-mobile/latest/developerguide/getting-started.html
http://docs.aws.amazon.com/AWSiOSSDK/latest/Classes/AWSDynamoDBObjectMapper.html

AWS Mobile Developer Guide
NoSQL Database (Amazon DynamoDB)

Object mapper methods return an AWSTask object. for more information, see Working with
Asynchronous Tasks.

Define a Mapping Class

An Amazon DynamoDB database is a collection of tables, and a table can be described as follows:

« Atable is a collection of items.
« Eachitem is a collection of attributes.
« Each attribute has a name and a value.

For the bookstore app, each item in the table represents a book, and each item has four attributes: Title,
Author, Price, and ISBN.

Each item (Book) in the table has a Primary key, in this case, the primary key is ISBN.
To directly manipulate database items through their object representation, map each item in the Book
table to a Book object in the client-side code, as shown in the following code. Attribute names are case

sensitive.

iOS - Swift

import AWSDynamoDB

class Book : AWSDynamoDBObjectModel, AWSDynamoDBModeling {
@objc var Title:String?
@objc var Author:String?
@objc var Price:String?
@objc var ISBN:String?

class Amazon DynamoDBTableName() -> String {
return "Books"

}

class func hashKeyAttribute() -> String {
return "ISBN"
}

iOS - Objective-C

#import <AWSDynamoDB/AWSDynamoDB.h>
#import "Book.h"

@interface Book : AWSDynamoDBObjectModel <AWSDynamoDBModeling>
@property (nonatomic, strong) NSString *Title;
@property (nonatomic, strong) NSString *Author;
@property (nonatomic, strong) NSNumber *Price;

@property (nonatomic, strong) NSString *ISBN;

@end

@implementation Book

+ (NSString *)dynamoDBTableName {
return @"Books";

}

250

AWS Mobile Developer Guide
NoSQL Database (Amazon DynamoDB)

+ (NSString *)hashKeyAttribute {
return @"ISBN";

}

@end

Note

As of SDK version 2.0.16, the AWSDynamoDBModel mapping class is deprecated and replaced
by AWSDynamoDBObjectModel. For information on migrating your legacy code, see
awsdynamodb-model.

To conform to the AWSDynamoDBModeling protocol, implement dynamoDBTableName, which returns
the name of the table, and hashKeyAttribute, which returns the name of the primary key. If the table
has a range key, implement + (NSString *)rangeKeyAttribute.

CRUD Operations

In this section:

Topics
« Save an Item (p. 251)
 Retrieve an Item (p. 253)
o Update an Item (p. 253)
o Delete an Item (p. 253)

The Amazon DynamoDB table, mapping class, and object mapper client enable your app to interact with
objects in the cloud.

Save an Item

The save: method saves an object to Amazon DynamoDB, using the default configuration. As a
parameter, save: takes a an object that inherits from AWSDynamoDBObjectModel and conforms to the
AWSDynamoDBModeling protocol. The properties of this object will be mapped to attributes in Amazon
DynamoDB table.

To create the object to be saved take the following steps.

1. Define the object and it's properties to match your table model.
iOS - Swift

let myBook = Book()

myBook?.ISBN = "3456789012"
myBook?.Title = "The Scarlet Letter"
myBook?.Author = "Nathaniel Hawthorne"

myBook?.Price = 899 as NSNumber?

iOS - Objective-C

Book *myBook = [Book new];

myBook.ISBN = @"3456789012";

myBook.Title = @"The Scarlet Letter";
myBook.Author = @"Nathaniel Hawthorne";
myBook.Price = [NSNumber numberWithInt:8997;

2. Pass the object to the save: method.

251

http://docs.aws.amazon.com/AWSiOSSDK/latest/Classes/AWSDynamoDBObjectMapper.html#//api/name/save:

AWS Mobile Developer Guide
NoSQL Database (Amazon DynamoDB)

iOS - Swift

dynamoDBObjectMapper.save(myBook).continueWith(block: { (task:AWSTask<AnyObject>!) ->
Any? in

if let error = task.error as? NSError {
print("The request failed. Error: \(error)")

} else {
// Do something with task.result or perform other operations.

}

D)

iOS - Objective-C

[[dynamoDBObjectMapper save:myBook]
continueWithBlock:2id(AWSTask *task) {
if (task.error) {
NSLog(@"The request failed. Error: [%@]", task.error);
} else {
//Do something with task.result or perform other operations.
}
return nil;

1

Save Behavior Options

The AWS Mobile SDK for iOS supports the following save behavior options:

 AWSDynamoDBObjectMapperSaveBehaviorUpdate

This option does not affect unmodeled attributes on a save operation. Passing a nil value for the
modeled attribute removes the attribute from the corresponding item in Amazon DynamoDB. By
default, the object mapper uses this behavior.

* AWSDynamoDBObjectMapperSaveBehaviorUpdateSkipNullAttributes
This option is similar to the default update behavior, except that it ignores any null value attribute(s)
and does not remove them from an item in Amazon DynamoDB.

e AWSDynamoDBObjectMapperSaveBehaviorAppendSet
This option treats scalar attributes (String, Number, Binary) the same as the
AWSDynamoDBObjectMapperSaveBehaviorUpdateSkipNullAttributes option. However, for set
attributes, this option appends to the existing attribute value instead of overriding it. The caller must

ensure that the modeled attribute type matches the existing set type; otherwise, a service exception
occurs.

e AWSDynamoDBObjectMapperSaveBehaviorClobber

This option clears and replaces all attributes, including unmodeled ones, on save. Versioned field
constraints are be disregarded.

The following code provides an example of setting a default save behavior on the object mapper.

iOS - Swift

let updateMapperConfig = AWSDynamoDBObjectMapperConfiguration()
updateMapperConfig.saveBehavior = .updateSkipNullAttributes

252

AWS Mobile Developer Guide
NoSQL Database (Amazon DynamoDB)

iOS - Objective-C

AWSDynamoDBObjectMapperConfiguration *updateMapperConfig =
[AWSDynamoDBObjectMapperConfiguration new];

updateMapperConfig.saveBehavior =
AWSDynamoDBObjectMapperSaveBehaviorUpdateSkipNullAttributes;

Use updateMapperConfig as an argument when calling save:configuration:.
Retrieve an Item

Using an object's primary key, in this case, ISBN, we can load the corresponding item from the database.
The following code returns the Book item with an ISBN of 6543210987.

iOS - Swift

dynamoDBObjectMapper.load(Book.self, hashKey: "6543210987"
rangeKey:nil).continueWith(block: { (task:AWSTask<AnyObject>!) -> Any? in
if let error = task.error as? NSError {
print("The request failed. Error: \(error)")
} else if let resultBook = task.result as? Book {
// Do something with task.result.
}
return nil

)

iOS - Objective-C

[[dynamoDBObjectMapper load:[Book class] hashKey:@"6543210987" rangeKey:nil]
continueWithBlock:*id(AWSTask *task) {
if (task.error) {
NSLog(@"The request failed. Error: [%@]", task.error);
} else {
//Do something with task.result.
¥
return nil;

1

The object mapper creates a mapping between the Book item returned from the database and the Book
object on the client (here, resultBook). Access the title at resultBook.Title.

Since the Books database does not have a range key, nil was passed to the rangeKey parameter.
Update an Item

To update an item in the database, just set new attributes and save the objects. The primary key of an
existing item, myBook . ISBN in the Book object mapper example, cannot be changed. If you save an
existing object with a new primary key, a new item with the same attributes and the new primary key are
created.

Delete an Item

To delete a table row, use the remove: method.

iOS - Swift

let bookToDelete = Book()

253

http://docs.aws.amazon.com/AWSiOSSDK/latest/Classes/AWSDynamoDBObjectMapper.html#//api/name/save:configuration:

AWS Mobile Developer Guide
NoSQL Database (Amazon DynamoDB)

bookToDelete?.ISBN = "4456789012";

dynamoDBObjectMapper.remove(bookToDelete).continueWith(block:
{ (task:AWSTask<AnyObject>!) -> Any? in
if let error = task.error as? NSError {
print("The request failed. Error: \(error)")
} else {
// Item deleted.
}
D)

iOS - Objective-C

Book *bookToDelete = [Book new];
bookToDelete.ISBN = @"4456789012";

[[dynamoDBObjectMapper remove:bookToDelete]
continueWithBlock:*id(AWSTask *task) {

if (task.error) {
NSLog(@"The request failed. Error: [%@]", task.error);
} else {
//Item deleted.
}
return nil;

1

Perform a Scan
A scan operation retrieves in an undetermined order.

The scan:expression: method takes two parameters: the class of the resulting object and an instance
of AWSDynamoDBScanExpression, which provides options for filtering results.

The following example shows how to create an AWSDynamoDBScanExpression object, setits 1imit
property, and then pass the Book class and the expression object to scan:expression:.

iOS - Swift

let scanExpression = AWSDynamoDBScanExpression()
scanExpression.limit = 20

dynamoDBObjectMapper.scan(Book.self, expression: scanExpression).continueWith(block:
{ (task:AWSTask<AnyObject>!) -> Any? in
if let error = task.error as? NSError {
print("The request failed. Error: \(error)")
} else if let paginatedOutput = task.result {
for book in paginatedOutput.items as! Book {
// Do something with book.
}

»

iOS - Objective-C

AWSDynamoDBScanExpression *scanExpression = [AWSDynamoDBScanExpression new];
scanExpression.limit = @10;

[[dynamoDBObjectMapper scan:[Book class]
expression:scanExpression]

254

AWS Mobile Developer Guide
NoSQL Database (Amazon DynamoDB)

continueWithBlock:Aid(AWSTask *task) {
if (task.error) {
NSLog(@"The request failed. Error: [%@]", task.error);
} else {
AWSDynamoDBPaginatedOutput *paginatedOutput = task.result;
for (Book *book in paginatedOutput.items) {
//Do something with book.
}
}
return nil;

1

Filter a Scan ~~~r~~~mv~~S

The output of a scan is returned as an AWSDynamoDBPaginatedOutput object. The array of returned
items is in the items property.

The scanExpression™ method provides several optional parameters. Use

"~ filterExpression and expressionAttributeValues to specify a scan result for the attribute
names and conditions you define. For more information about the parameters and the API, see
AWSDynamoDBScanExpression.

The following code scans the Books table to find books with a price less than 50.

iOS - Swift

let scanExpression = AWSDynamoDBScanExpression()
scanExpression.limit = 10
scanExpression.filterExpression = "Price < :val"
scanExpression.expressionAttributevValues = [":val": 50]

dynamoDBObjectMapper.scan(Book.self, expression: scanExpression).continueWith(block:
{ (task:AWSTask<AnyObject>!) -> Any? in

if let error = task.error as? NSError {
print("The request failed. Error: \(error)")

} else if let paginatedOutput = task.result {
for book in paginatedOutput.items as! Book {

// Do something with book.

}

}

D)

iOS - Objective-C

AWSDynamoDBScanExpression *scanExpression = [AWSDynamoDBScanExpression new];
scanExpression.limit = @10;

scanExpression.filterExpression = @"Price < :val";
scanExpression.expressionAttributevValues = @{@":val":@50};

[[dynamoDBObjectMapper scan:[Book class]
expression:scanExpression]
continueWithBlock:Aid(AWSTask *task) {
if (task.error) {
NSLog(@"The request failed. Error: [%@]", task.error);
} else {
AWSDynamoDBPaginatedOutput *paginatedOutput = task.result;
for (Book *book in paginatedOutput.items) {
//Do something with book.
}
}

return nil;

255

http://docs.aws.amazon.com/AWSiOSSDK/latest/Classes/AWSDynamoDBScanExpression.html

AWS Mobile Developer Guide
NoSQL Database (Amazon DynamoDB)

1

You can also use the projectionExpression™ property to specify the

attributes to retrieve from the ~~Books table. For example adding
scanExpression.projectionExpression = @"ISBN, Title, Price"; inthe previous code
snippet retrieves only those three properties in the book object. The Author property in the book object
will always be nil.

Perform a Query

The query API enables you to query a table or a secondary index. The query:expression:
method takes two parameters: the class of the resulting object and an instance of
AWSDynamoDBQueryExpression.

To query an index, you must also specify the indexName. You must specify the hashKeyAttribute if
you query a global secondary with a different hashKey. If the table or index has a range key, you can
optionally refine the results by providing a range key value and a condition.

The following example illustrates querying the Books index table to find all books whose author is "John
Smith", with a price less than 50.

iOS - Swift

let queryExpression = AWSDynamoDBQueryExpression()

queryExpression.indexName = "Author-Price-index"
queryExpression.keyConditionExpression = @"Author = :authorName AND Price < :val";
queryExpression.expressionAttributevValues = @{@":authorName": @"John Smith", @":val":
@50};

dynamoDBObjectMapper.query(Book.self, expression: queryExpression).continueWith(block:
{ (task:AWSTask<AnyObject>!) -> Any? in
if let error = task.error as? NSError {
print("The request failed. Error: \(error)")

} else if let paginatedOutput = task.result {

for book in paginateOutput.items as! Book {

// Do something with book.

}

}

return nil

3

iOS - Objective-C

AWSDynamoDBQueryExpression *queryExpression = [AWSDynamoDBQueryExpression new];
queryExpression.indexName = @"Author-Price-index";
queryExpression.keyConditionExpression = @"Author = :authorName AND Price < :val";

queryExpression.expressionAttributevalues = @{e@":authorName": @"John Smith",
@":val":@50};

[[dynamoDBObjectMapper query:[Book class]
expression:queryExpression]
continueWithBlock:Aid(AWSTask *task) {
if (task.error) {
NSLog(@"The request failed. Error: [%@]", task.error);
} else {
AWSDynamoDBPaginatedOutput *paginatedOutput = task.result;

256

AWS Mobile Developer Guide
NoSQL Database (Amazon DynamoDB)

for (Book *book in paginatedOutput.items) {
//Do something with book.
}
}
return nil;

1

In the preceding example, indexName is specified to demonstrate querying an index. The query
expression is specified using keyConditionExpression and the values used in the expression using
expressionAttributevValues.

You can also provide filterExpression and projectionExpression in
AWSDynamoDBQueryExpression. The syntax is the same as that used in a scan operation.

For more information, see AWSDynamoDBQueryExpression.
Migrating AWSDynamoDBModel to AWSDynamoDBObjectModel

As of SDK version 2.0.16, the AWSDynamoDBModel mapping class is deprecated and replaced by
AWSDynamoDBObjectModel.The deprecated AWSDynamoDBModel used NSArray to represent
multi-valued types (String Set, Number Set, and Binary Set); it did not support Boolean,

Map, or List types. The new AWSDynamoDBObjectModel uses NSSet for multi-valued types and
supports Boolean, Map, and List. For the Boolean type, you create an NSNumber using [NSNumber
numberWithBool:YES] or using the shortcuts @YES and @No. For the Map type, create using
NSDictionary. For the List type, create using NSArray.

Additional Resources

« Amazon DynamoDB Developer Guide
o Amazon DynamoDB API Reference

iOS: Amazon DynamoDB Low-level Client

Topics
o Overview (p. 13)
o Setup (p. 224)
» Conditional Writes Using the Low-Level Client (p. 258)
« Batch Operations Using the Low-Level Client (p. 260)
« Additional Resources (p. 222)

Overview

Amazon DynamoDB is a fast, highly scalable, highly available, cost-effective, nonrelational database
service. Amazon DynamoDB removes traditional scalability limitations on data storage while maintaining
low latency and predictable performance.

The AWS Mobile SDK for iOS provides both low-level and high-level libraries for working Amazon
DynamoDB.

The low-level client described in this section allows the kind of direct access to Amazon DynamoDB
tables useful for NoSQL and other non-relational data designs. The low-level client also supports
conditional data writes to mitigate simultaneous write conflicts and batch data writes.

The high-level library includes dynamodb-object-mapper, which lets you map client-side classes to
access and manipulate Amazon Dynamo tables.

257

http://docs.aws.amazon.com/AWSiOSSDK/latest/Classes/AWSDynamoDBQueryExpression.html
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/
http://docs.aws.amazon.com/amazondynamodb/latest/APIReference/
https://aws.amazon.com/dynamodb/

AWS Mobile Developer Guide
NoSQL Database (Amazon DynamoDB)

Setup
To set your project up to use the AWS SDK for iOS TransferUtility, take the following steps.
1. Setup the SDK, Credentials, and Services

To use the low-level DynamoDB mobile client in a new app, follow the steps described in Get Started to
install the AWS Mobile SDK for iOS.

For apps that use an SDK version prior to 2.6.0, follow the steps on setup-options-for-aws-sdk-for-ios
to install the AWS Mobile SDK for iOS. Then use the steps on cognito-auth-identity-for-ios-legacy to
configure user credentials, and permissions.

2. Create or Use an Existing Amazon DynamoDB Table

Follow the steps on <dynamodb-setup-for-ios-legacy> to create a table.

3. Import the AWSDynamoDB APIs

Add the following import statement to your project.

iOS - Swift

import AWSDynamoDB

iOS - Objective-C

#import <AWSDynamoDB/AWSDynamoDB.h>

Conditional Writes Using the Low-Level Client

In a multi-user environment, multiple clients can access the same item and attempt to modify

its attribute values at the same time. To help clients coordinate writes to data items, the Amazon
DynamoDB low-level client supports conditional writes for Putitem, Deleteltem, and Updateltem
operations. With a conditional write, an operation succeeds only if the item attributes meet one or more
expected conditions; otherwise, it returns an error.

In the following example, we update the price of an item in the Books table if the Price attribute of the
item has a value of 999.

iOS - Swift

Amazon DynamoDB
let updateInput

AWSDynamoDB.default()
AWSDynamoDBUpdateItemInput()

let hashKeyValue = AWSDynamoDBAttributeValue()
hashKeyValue?.s = "4567890123"

updateInput?.tableName = "Books"
updateInput?.key = ["ISBN": hashKeyValue!]

let oldPrice = AWSDynamoDBAttributeValue()
oldPrice?.n = "999"

let expectedValue = AWSDynamoDBExpectedAttributeValue()
expectedvalue?.value = oldPrice

let newPrice = AWSDynamoDBAttributeValue()

258

http://docs.aws.amazon.com/aws-mobile/latest/developerguide/getting-started.html

AWS Mobile Developer Guide
NoSQL Database (Amazon DynamoDB)

newPrice?.n = "1199"

let valueUpdate = AWSDynamoDBAttributeValueUpdate()
valueUpdate?.value = newPrice
valueUpdate?.action = .put

updateInput?.attributeUpdates = ["Price": valueUpdate!]
updateInput?.expected = ["Price": expectedValue!]
updateInput?.returnValues = .updatedNew

Amazon DynamoDB.updateItem(updateInput!).continueWith
{ (task:AWSTask<AWSDynamoDBUpdateItemOutput>) -> Any? in
if let error = task.error as? NSError {
print("The request failed. Error: \(error)")
return nil

}
// Do something with task.result

return nil

iOS - Objective-C

AWSDynamoDB *dynamoDB = [AWSDynamoDB defaultDynamoDB];
AWSDynamoDBUpdateItemInput *updateInput = [AWSDynamoDBUpdateItemInput new];

AWSDynamoDBAttributeValue *hashKeyValue = [AWSDynamoDBAttributeValue new];
hashKeyValue.S = @"4567890123";

updateInput.tableName = @"Books";
updateInput.key = @{ @"ISBN" : hashKeyValue };

AWSDynamoDBAttributeValue *oldPrice = [AWSDynamoDBAttributeValue new];
oldPrice.N = @"999";

AWSDynamoDBExpectedAttributeValue *expectedValue = [AWSDynamoDBExpectedAttributeValue
new];
expectedValue.value = oldPrice;

AWSDynamoDBAttributeValue *newPrice = [AWSDynamoDBAttributeValue new];
newPrice.N = @"1199";

AWSDynamoDBAttributeValueUpdate *valueUpdate = [AWSDynamoDBAttributeValueUpdate new];
valueUpdate.value = newPrice;
valueUpdate.action = AWSDynamoDBAttributeActionPut;

updateInput.attributeUpdates = @{@"Price": valueUpdate};
updateInput.expected = @{@"Price": expectedValue};
updateInput.returnValues = AWSDynamoDBReturnValueUpdatedNew;

[[dynamoDB updateItem:updateInput]
continueWithBlock:2id(AWSTask *task) {
if (task.error) {
NSLog(@"The request failed. Error: [%@]", task.error);
} else {
//Do something with task.result.
}
return nil;

1

Conditional writes are idempotent. In other words, if a conditional write request is made multiple times,
the update will be performed only in the first instance unless the content of the request changes. In the

259

AWS Mobile Developer Guide
NoSQL Database (Amazon DynamoDB)

preceding example, sending the same request a second time results in a ConditionalCheckFailedException,

because the expected condition is not met after the first update.

Batch Operations Using the Low-Level Client

The Amazon DynamoDB low-level client provides batch write operations to put items in the database
and delete items from the database. You can also use batch get operations to return the attributes of
one or more items from one or more tables.

The following example shows a batch write operation.

iOS - Swift

Amazon DynamoDB = AWSDynamoDB.default()

//Write Request 1
let hashvValuel = AWSDynamoDBAttributeValue()

hashValuel?.s = "3210987654"
let otherValuel = AWSDynamoDBAttributeValue()
othervValuel?.s = "Some Title"

let writeRequest = AWSDynamoDBWriteRequest()
writeRequest?.putRequest = AWSDynamoDBPutRequest()
writeRequest?.putRequest?.item = ["ISBN": hashValuel!, "Title": otherValuel!]

//Write Request 2
let hashvValue2 = AWSDynamoDBAttributeValue()

hashValue2?.s = "8901234567"
let othervValue2 = AWSDynamoDBAttributeValue()
othervValue2?.s = "Another Title"

let writeRequest2 = AWSDynamoDBWriteRequest()
writeRequest2?.putRequest = AWSDynamoDBPutRequest()
writeRequest2?.putRequest?.item = ["ISBN": hashvValue2!, "Title": otherValue2!]

let batchWriteItemInput = AWSDynamoDBBatchWriteItemInput()
batchWriteItemInput?.requestItems = ["Books": [writeRequest!, writeRequest2!]]

Amazon DynamoDB.batchWriteItem(batchWriteItemInput!).continueWith
{ (task:AWSTask<AWSDynamoDBBatchWriteItemOutput>) -> Any? in
if let error = task.error as? NSError {
print("The request failed. Error: \(error)")
return nil

}

// Do something with task.result

return nil

iOS - Objective-C

AWSDynamoDB *dynamoDB = [AWSDynamoDB defaultDynamoDB];

//Write Request 1

AWSDynamoDBAttributeValue *hashValuel = [AWSDynamoDBAttributeValue new];
hashValuel.S = @"3210987654";

AWSDynamoDBAttributeValue *otherValuel = [AWSDynamoDBAttributeValue new];
othervValuel.S = @"Some Title";

AWSDynamoDBWriteRequest *writeRequest = [AWSDynamoDBWriteRequest new];
writeRequest.putRequest = [AWSDynamoDBPutRequest new];
writeRequest.putRequest.item = @{

260

AWS Mobile Developer Guide
Serverless Code (AWS Lambda)

@"ISBN" : hashvaluel,
@"Title" : otherValuel

}i

//Write Request 2

AWSDynamoDBAttributeValue *hashValue2 = [AWSDynamoDBAttributeValue new];
hashValue2.S = @"8901234567";

AWSDynamoDBAttributeValue *otherValue2 = [AWSDynamoDBAttributeValue new];
othervValue2.S = @"Another Title";

AWSDynamoDBWriteRequest *writeRequest2 = [AWSDynamoDBWriteRequest new];
writeRequest2.putRequest = [AWSDynamoDBPutRequest new];
writeRequest2.putRequest.item = @{

@"ISBN" : hashvValue2,
@"Title" : otherValue2
Y

AWSDynamoDBBatchWriteItemInput *batchWriteItemInput = [AWSDynamoDBBatchWriteItemInput
new]j;
batchWriteItemInput.requestItems = @{@"Books": @[writeRequest,writeRequest2]};

[[dynamoDB batchWriteItem:batchWriteItemInput]
continueWithBlock:Aid(AWSTask *task) {
if (task.error) {
NSLog(@"The request failed. Error: [%@]", task.error);
} else {
//Do something with task.result.
}
return nil;

1

Additional Resources

« Amazon DynamoDB Developer Guide
« Amazon DynamoDB API Reference

How To: Serverless Code with AWS Lambda

Just Getting Started? Use streamlined steps (p. 75) to install the SDK
and integrate AWS Lambda.

Or, use the contents of this page if your app will integrate existing AWS services.

This section provides information on the steps for achieving specific tasks for integrating your AWS
Lambda functions into your Android and iOS apps.

Topics
« Android: Execute Code On Demand with AWS Lambda (p. 261)
« i0S: Execute Code On Demand with AWS Lambda (p. 266)

Android: Execute Code On Demand with AWS Lambda

Just Getting Started? Use streamlined steps (p. 75) to install the SDK
and integrate features.

261

http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/
http://docs.aws.amazon.com/amazondynamodb/latest/APIReference/

AWS Mobile Developer Guide
Serverless Code (AWS Lambda)

Or, use the contents of this page if your app will integrate existing AWS services.

Overview

AWS Lambda is a compute service that runs your code in response to events and automatically manages
the compute resources for you, making it easy to build applications that respond quickly to new
information. The AWS Mobile SDK for Android enables you to call Lambda functions from your Android
mobile apps.

The tutorial below explains how to integrate AWS Lambda with your app.
Setup

Prerequisites

You must complete all of the instructions on the Android: Setup Options for the SDK (p. 133) page
before beginning this tutorial.

Create a Lambda Function in the AWS Console

For this tutorial, let's use a simple "echo" function that returns the input. Follow the steps described at
AWS Lambda Getting Started, replacing the function code with the code below:

exports.handler = function(event, context) {
console.log("Received event");
context.succeed("Hello "+ event.firstName + "using " +
context.clientContext.deviceManufacturer);

}

Set IAM Permissions

The default IAM role policy grants your users access to Amazon Mobile Analytics and Amazon Cognito
Sync. To use AWS Lambda in your application, you must configure the IAM role policy so that it allows
your application and your users access to AWS Lambda. The IAM policy in the following steps allows

the user to perform the actions shown in this tutorial on a given AWS Lambda function identified by its
Amazon Resource Name (ARN). To find the ARN go to the Lambda Console and click the Function name.

To set IAM Permissions for AWS Lambda:

1. Navigate to the IAM Console and click Roles in the left-hand pane.

2. Type your identity pool name into the search box. Two roles will be listed: one for unauthenticated
users and one for authenticated users.

3. Click the role for unauthenticated users (it will have unauth appended to your Identity Pool name).
4. Click the Create Role Policy button, select Custom Policy, and then click the Select button.

5. Enter a name for your policy and paste in the following policy document, replacing the function’s
Resource value with the ARN for your function (click your function's Function name in the AWS
Lambda console to view its ARN).

"Statement": [{
"Effect": "Allow",
"Action": [
"lambda: invokefunction"
1,
"Resource": [
"arn:aws:lambda:us-west-2:012345678901: function:yourFunctionName”

]

262

http://docs.aws.amazon.com/lambda/latest/dg/getting-started.html
https://console.aws.amazon.com/iam/home?region=us-east-1#/home

AWS Mobile Developer Guide
Serverless Code (AWS Lambda)

iy

1. Click the Add Statement button, and then click the Next Step button. The wizard will show you the
configuration that you generated.

2. Click the Apply Policy button.

To learn more about IAM policies, see IAM documentation.
Set Permissions in Your Android Manifest

In your AndroidManifest.xml, add the following permission

<uses-permission android:name="android.permission.ACCESS_NETWORK_STATE" />

Initialize LambdalnvokerFactory

Android - Java

Pass your initialized Amazon Cognito credentials provider to the LambdaInvokerFactory
constructor:

LambdaInvokerFactory factory = new LambdaInvokerFactory(
myActivity.getApplicationContext(),
REGION,
credentialsProvider);

Android - Kotlin

Pass your initialized Amazon Cognito credentials provider to the LambdaInvokerFactory
constructor:

val factory = LambdaInvokerFactory(applicationContext,
REGION, credentialsProvider)

Declare Data Types

Create a Lambda proxy

Declare an interface containing one method for each Lambda function call. Each method in the interface
must be decorated with the "@LambdaFunction" annotation. The LambdaFunction attribute can take 3
optional parameters:

« functionName allows you to specify the name of the Lambda function to call when the method is
executed, by default the name of the method is used.

« logType is valid only when invocationType is set to "Event". If set, AWS Lambda will return the last
4KB of log data produced by your Lambda Function in the x-amz-log-results header.

« invocationType specifies how the Lambda function will be invoked. Can be one of the following
values:

« Event: calls the Lambda Function asynchronously
« RequestResponse: calls the Lambda Function synchronously
« DryRun: allows you to validate access to a Lambda Function without executing it

263

http://docs.aws.amazon.com/IAM/latest/UserGuide/IAM_Introduction.html

AWS Mobile Developer Guide
Serverless Code (AWS Lambda)

The following code shows how to create a Lambda proxy:

Android - Java

package com.amazonaws.demo.lambdainvoker;
import com.amazonaws.mobileconnectors.lambdainvoker.LambdaFunction;

public interface MyInterface {
/**
* Invoke lambda function "echo". The function name is the method name
*/
@LambdaFunction
String echo(NameInfo nameInfo)

/**
* Invoke lambda function "echo". The functionName in the annotation
* overrides the default which is the method name
*/

@LambdaFunction(functionName = "echo")

void noEcho(NameInfo nameInfo)

Android - Kotlin

package com.amazonaws.demo.lambdainvoker;
import com.amazonaws.mobileconnectors.lambdainvoker.LambdaFunction;

interface MyInterface {
/**
* Invoke lambda function "echo". The function name is the method name
*/
@LambdaFunction
fun echo(nameInfo: NameInfo): String

/**
* Invoke lambda function "echo". The functionName in the annotation
* overrides the default which is the method name

*/

@LambdaFunction(functionName = "echo")

fun noEcho(nameInfo: NameInfo): Unit

Invoke the Lambda Function

Note
Do not invoke the Lambda function from the main thread as it results in a network call.

The following code shows how to initialize the Cognito Caching Credentials Provider and invoke a
Lambda function. The value for IDENTITY POOL_ID will be specific to your account. Ensure the region
is the same as the Lambda function you are trying to invoke.

Android - Java

// Create an instance of CognitoCachingCredentialsProvider
CognitoCachingCredentialsProvider credentialsProvider =
new CognitoCachingCredentialsProvider(
myActivity.getApplicationContext(),
IDENTITY_ POOL_ID,
Regions.YOUR_REGION);

264

AWS Mobile Developer Guide
Serverless Code (AWS Lambda)

// Create a LambdaInvokerFactory, to be used to instantiate the Lambda proxy
LambdaInvokerFactory factory = new LambdaInvokerFactory(
myActivity.getApplicationContext(),
REGION,
credentialsProvider);

// Create the Lambda proxy object with default Json data binder.
// You can provide your own data binder by implementing

// LambdaDataBinder

MyInterface myInterface = factory.build(MyInterface.class);

// Create an instance of the POJO to transfer data
NameInfo nameInfo = new NameInfo("John", "Doe");

// The Lambda function invocation results in a network call
// Make sure it is not called from the main thread
new AsyncTask<NameInfo, Void, String>() {
@Override
protected String doInBackground(NameInfo... params) {
// invoke "echo" method. In case it fails, it will throw a
// LambdaFunctionException.
try |
return myInterface.echo(params[0]);
} catch (LambdaFunctionException 1lfe) {
Log.e(TAG, "Failed to invoke echo", 1lfe);
return null;

}

@Override
protected void onPostExecute(String result) {
if (result == null) {
return;

}

// Do a toast
Toast.makeText(MainActivity.this, result, Toast.LENGTH_LONG).show();
}

}.execute(nameInfo);

Android - Kotlin

// Create an instance of CognitoCachingCredentialsProvider
val credentialsProvider = CognitoCachingCredentialsProvider(
this@MainActivity.applicationContext,
IDENTITY_ POOL_ID,
Regions.IDENTITY_ POOI_REGION)

// Create a LambdaInvokerFactory, to be used to instantiate the Lambda proxy
val factory = LambdalInvokerFactory(

this@MainActivity.applicationContext,

LAMBDA_REGION,

credentialsProvider)

// Create the Lambda proxy object with default Json data binder.
// You can provide your own data binder by implementing

// LambdaDataBinder

val myInterface = factory.build(MyInterface::class.java);

// Create an instance of the POJO to transfer data
val nameInfo = NameInfo("John", "Doe");

// The Lambda function invocation results in a network call
// Make sure it is not called from the main thread

265

AWS Mobile Developer Guide
Serverless Code (AWS Lambda)

thread(start = true) {
// Invoke "echo" method. 1In case it fails, it will throw an exception
try {
val response: String = myInterface.echo(nameInfo)
runOnUiThread {
Toast.makeText(thise@eMainActivity, result, Toast.LENGTH_LONG).show()
}
} catch (ex: LambdaFunctionException) {
Log.e(TAG, "Lambda execution failed")
}

Now whenever the Lambda function is invoked, you should see an application toast with the text "Hello
John using <device>".

To get started using streamlined steps for setting up and using lambda functions to handle cloud API
calls, see Add AWS Mobile Cloud Logic (p. 75).

iOS: Execute Code On Demand with AWS Lambda

Just Getting Started? Use streamlined steps (p. 75) to install the SDK
and integrate AWS Lambda functions.

Or, use the contents of this page if your app will integrate existing AWS services.

Topics
o Overview (p. 13)
» Setup (p. 224)
« Invoking an AWS Lambda Function (p. 267)
« Client Context (p. 270)
« ldentity Context (p. 271)

Overview

The AWS Lambda service makes it easy to create scalable, secure, and highly available backends for your
mobile apps without the need to provision or manage infrastructure.

You can create secure logical functions in the cloud that can be called directly from your iOS app. Your
AWS Lambda code, written in C#, Node.js, Python, or Java, can implement standalone logic, extend your
app to a range of AWS services, and/or connect to services and applications external to AWS.

The availability and cost of a AWS Lambda function automatically scales to amount of traffic it receives.
Functions can also be accessed from an iOS app through Amazon APl Gateway, giving features like global
provisioning, enterprise grade monitoring, throttling and control of access.

Setup

This section provides a step-by-step guide for getting started with AWS Lambda using the AWS Mobile
SDK for iOS.

1. Install the SDK

Add the AWS SDK for iOS to your project and import the APIs you need, by following the steps
described in Set Up the AWS SDK for iOS.

2. Configure Credentials

266

https://aws.amazon.com/lambda/
https://aws.amazon.com/lambda/

AWS Mobile Developer Guide
Serverless Code (AWS Lambda)

To use Amazon Cognito to create AWS identities and credentials that give your users access to your
app's AWS resources, follow the steps described at :ref:* Amazon Cognito Setup for iOS <cognito-auth-
aws-identity-for-ios>".

3. Create and Configure a Lamda Function
a. Sign in to the AWS Lambda console.
b. Choose Create a Lamda function.
¢. Choose the Blank Function template.

Note that dozens of function templates that connect to other AWS services are available.
d. Choose Next.

Note that the console allows you to configure triggers for a function from other AWS services, these
won't be used in this walkthrough.

e. Type a Name and select Node.js as the Runtime language.

f. Under Lambda function handler and role, select Create new role from template(s). Type a Role
name. Select the Policy template named Simple Microservice permissions.

g. Choose Next.
h. Choose Create function.

Invoking an AWS Lambda Function

The SDK enables you to call AWS Lambda functions from your iOS mobile apps, using the
AWSLambdalnvoker class. When invoked from this SDK, AWS Lambda functions receive data about the
device and the end user identity through client and identity context objects. To learn more about using
these contexts to create rich, and personalized app experiences, see Client Context (p. 270) and Identity
Context (p. 271).

Import AWS Lambda API
To use the lambdainvoker API, use the following import statement:

iOS - Swift

import AWSLambda

Obijective C

#import <AWSLambda/AWSLambda.h>

Call lambdalnvoker

AWSLambdaInvoker provides a high-level abstraction for AWS Lambda. When invokeFunction
JSONObject is invoked, the JSON object is serialized into JSON data and sent to the AWS Lambda
service. AWS Lambda returns a JSON encoded response that is deserialized into a JSON object.

A valid JSON object must have the following properties:

« All objects are instances of string, number, array, dictionary or null objects.
« All dictionary keys are instances of string objects.
o Numbers are not NaN or infinity.

The following is an example of valid request.

267

https://console.aws.amazon.com/lambda/
http://docs.aws.amazon.com/AWSiOSSDK/latest/Classes/AWSLambdaInvoker.html

AWS Mobile Developer Guide
Serverless Code (AWS Lambda)

iOS - Swift

let lambdaInvoker = AWSLambdaInvoker.default()

let jsonObject: [String: Any] = ["keyl" : "valuel",
"key2" : 2 ,
"key3" : [1, 2],
"isError" : false]

lambdaInvoker.invokeFunction("myFunction", jsonObject: jsonObject)
.continueWith(block: {(task:AWSTask<AnyObject>) -> Any? in
if(task.error != nil) {
print("Error: \(task.error!)")
return nil

}

// Handle response in task.result
return nil

»

Objective C

AWSLambdaInvoker *lambdaInvoker = [AWSLambdaInvoker defaultLambdaInvoker];

[[lambdaInvoker invokeFunction:e@"myFunction"

JSONObject:@{@"keyl" : @"valuel",
@"key2" : @2,
@"key3" : [NSNull null],
@"key4" : e[el, e"2"],
@"isError" : @NO}] continueWithBlock:/2id(AWSTask *task) {

// Handle response
return nil;

1

Using function returns

On successful execution, task.result contains a JSON object. For instance, if myFunctions returns a
dictionary, you can cast the result to a dictionary object as follows.

iOS - Swift

if let JSONDictionary = task.result as? NSDictionary {
print("Result: \(JSONDictionary)")
print("resultKey: \(JSONDictionary["resultKey"])")

Objective C

if (task.result) {
NSLog(@"Result: %@", task.result);
NSDictionary *JSONObject = task.result;
NSLog(@"result: %@", JSONObject[@"resultKey"]);

Handling service execution errors

On failed AWS Lambda service execution, task.error may contain a NSError with AWSLambdaErrorDomain
domain and the following error code.

o AWSLambdaErrorUnknown

268

AWS Mobile Developer Guide
Serverless Code (AWS Lambda)

o AWSLambdaErrorService
o AWSLambdaErrorResourceNotFound
o AWSLambdaErrorinvalidParameterValue

On failed function execution, task.error may contain a NSError with AWSLambdalnvokerErrorDomain
domain and the following error code:

« AWSLambdalnvokerErrorTypeUnknown
« AWSLambdalnvokerErrorTypeFunctionError

When AWSLambdalnvokerErrorTypeFunctionError error code is returned, error.userinfo may contain a
function error from your AWS Lambda function with AWSLambdalnvokerFunctionErrorKey key.
The following code shows error handling.

iOS - Swift

if let error = task.error as? NSError {
if (error.domain == AWSLambdaInvokerErrorDomain) &&
(AWSLambdaInvokerErrorType.functionError == AWSLambdaInvokerErrorType(rawValue:
error.code)) {
print("Function error: \(error.userInfo[AWSLambdaInvokerFunctionErrorKey])")
} else {
print("Error: \(error)")

}
return nil
}
Objective C

if (task.error) {
NSLog(@"Error: %@", task.error);
if ([task.error.domain isEqualToString:AWSLambdaInvokerErrorDomain]
&& task.error.code == AWSLambdaInvokerErrorTypeFunctionError) {
NSLog(@"Function error: %@",
task.error.userInfo[AWSLambdaInvokerFunctionErrorKey]);

¥

Comprehensive example
The following code shows invoking an AWS Lambda call and handling returns and errors all together.

iOS - Swift

let lambdaInvoker = AWSLambdaInvoker.default()

let jsonObject: [String: Any] = ["keyl" : "valuel",
"key2" : 2,
"key3" : [1, 2],
"isError" : false]

lambdaInvoker.invokeFunction("myFunction", jsonObject: jsonObject).continuewWith(block:
{(task:AWSTask<AnyObject>) -> Any? in
if let error = task.error as? NSError {
if (error.domain == AWSLambdaInvokerErrorDomain) &&
(AWSLambdaInvokerErrorType. functionError == AWSLambdaInvokerErrorType(rawValue:
error.code) {

269

AWS Mobile Developer Guide
Serverless Code (AWS Lambda)

print("Function error:
\(error.userInfo[AWSLambdaInvokerFunctionErrorKey])")
} else {
print("Error: \(error)")
}

return nil

}

// Handle response in task.result

if let JSONDictionary = task.result as? NSDictionary {
print("Result: \(JSONDictionary)")
print("resultKey: \(JSONDictionary["resultKey"])")

Obj

}

return nil
b
ective C

AWSLambdaInvoker *lambdaInvoker = [AWSLambdaInvoker defaultLambdaInvoker];

[[lambdaInvoker invokeFunction:e@"myFunction"
JSONObject:@{e@"keyl" : @"valuel",

@"key2" : @2,

@"key3" : [NSNull null],

@"key4" : e[el, e"2"],

@"isError" : @NO}] continueWithBlock:*id(AWSTask *task) {

if (task.error) {
NSLog(@"Error: %@", task.error);
if ([task.error.domain isEqualToString:AWSLambdaInvokerErrorDomain]
&& task.error.code == AWSLambdaInvokerErrorTypeFunctionError) {
NSLog(@e"Function error: %e",
task.error.userInfo[AWSLambdaInvokerFunctionErrorKey]);
}
}
if (task.result) {
NSLog(@"Result: %@", task.result);
NSDictionary *JSONObject = task.result;
NSLog(@e"result: %@", JSONObject[@"resultKey"]);
}

return nil;

1

Client Context

Calls to AWS Lambda using this SDK provide your functions with data about the calling device and app
using the ClientContext class.

You can access the client context in your lambda function as follows.

JavaScript

exports.handler = function(event, context) {

console.log("installation_id = " + context.clientContext.client.installation_id);
console.log("app_version_code = " + context.clientContext.client.app_version_code);
console.log("app_version_name = " + context.clientContext.client.app_version_name);
console.log("app_package_name = " + context.clientContext.client.app_package_name);
console.log("app_title = " + context.clientContext.client.app_title);
console.log("platform version = " + context.clientContext.env.platform version);
console.log("platform = " + context.clientContext.env.platform);

console.log("make = " + context.clientContext.env.make);

console.log("model = " + context.clientContext.env.model);

console.log("locale = " + context.clientContext.env.locale);

270

AWS Mobile Developer Guide
Serverless Code (AWS Lambda)

context.succeed("Your platform is " + context.clientContext.env.platform;

ClientContext has the following fields:
client.installation_id

Auto-generated UUID that is created the first time the app is launched. This is stored in the keychain
on the device. In case the keychain is wiped a new installation ID will be generated.

client.app_version_code

CFBundleShortVersionString
client.app_version_name

CFBundleVersion
client.app_package_name

CFBundleldentifier
client.app_title

CFBundleDisplayName
env.platform_version

systemVersion
env.platform

systemName
env.make

Hardcoded as "apple"
env.model

Model of the device
env.locale

localeldentifier from autoupdatingCurrentLocale

Identity Context

The IdentityContext class of the SDK passes Amazon Cognito credentials making the AWS identity of the
end user available to your function. You can access the Identity ID as follows.

JavaScript

exports.handler = function(event, context) {
console.log("clientID = " + context.identity);

context.succeed("Your client ID is " + context.identity);

For more about Amazon Cognito in the AWS Mobile SDK for iOS, see :ref:* Amazon Cognito Setup for iOS
<cognito-auth-aws-identity-for-ios>".

271

https://developer.apple.com/library/ios/documentation/General/Reference/InfoPlistKeyReference/Articles/CoreFoundationKeys.html#//apple_ref/doc/uid/20001431-111349
https://developer.apple.com/library/ios/documentation/General/Reference/InfoPlistKeyReference/Articles/CoreFoundationKeys.html#//apple_ref/doc/uid/20001431-102364
https://developer.apple.com/library/ios/documentation/General/Reference/InfoPlistKeyReference/Articles/CoreFoundationKeys.html#//apple_ref/doc/uid/20001431-102070
https://developer.apple.com/library/ios/documentation/General/Reference/InfoPlistKeyReference/Articles/CoreFoundationKeys.html#//apple_ref/doc/uid/20001431-110725
https://developer.apple.com/library/ios/documentation/UIKit/Reference/UIDevice_Class/index.html#//apple_ref/occ/instp/UIDevice/systemVersion
https://developer.apple.com/library/ios/documentation/UIKit/Reference/UIDevice_Class/index.html#//apple_ref/occ/instp/UIDevice/systemName
https://developer.apple.com/library/ios/documentation/UIKit/Reference/UIDevice_Class/index.html#//apple_ref/occ/instp/UIDevice/model
https://developer.apple.com/library/ios/documentation/Cocoa/Reference/Foundation/Classes/NSLocale_Class/index.html#//apple_ref/occ/instp/NSLocale/localeIdentifier
https://developer.apple.com/library/ios/documentation/Cocoa/Reference/Foundation/Classes/NSLocale_Class/index.html#//apple_ref/occ/clm/NSLocale/autoupdatingCurrentLocale

AWS Mobile Developer Guide
Natural Language (Amazon Lex)

How To Add Natural Language Understanding with
Amazon Lex

Just Getting Started? Use streamlined steps (p. 84) to install the SDK
and integrate Amazon Lex.

Or, use the contents of this page if your app will integrate existing AWS services.

This section provides information on the steps for achieving specific tasks for integrating your Amazon
Lex into your Android and iOS apps.

Topics
« Android: Use Natural Language with Amazon Lex (p. 272)
« i0S: Use Natural Language with Amazon Lex (p. 276)

Android: Use Natural Language with Amazon Lex

Just Getting Started? Use streamlined steps (p. 84) to install the SDK
and integrate Amazon Lex.

Or, use the content on this page if your app integrates existing AWS services.
Overview

Amazon Lex is an AWS service for building voice and text conversational interfaces into applications.
With Amazon Lex, the same natural language understanding engine that powers Amazon Alexa is now
available to any developer, enabling you to build sophisticated, natural language chatbots into your new
and existing applications.

The AWS Mobile SDK for Android provides an optimized client for interacting with Amazon Lex runtime
APIs, which support both voice and text input and can return either voice or text. Amazon Lex has built-
in integration with AWS Lambda to allow insertion of custom business logic into your Amazon Lex
processing flow, including all of the extension to other services that Lambda makes possible.

For information on Amazon Lex concepts and service configuration, see How it Works in the Lex
Developer Guide.

For information about Amazon Lex Region availability, see AWS Service Region Availability.

To get started using the Amazon Lex mobile client, integrate the SDK for Android into your app, set the
appropriate permissions, and import the necessary libraries.

Setting Up
Include the SDK in Your Project

Follow the instructions at setup-legacy to include the JAR files for this service and set the appropriate
permissions.

Set Permissions in Your Android Manifest

In your AndroidManifest.xml file, add the following permission:

272

http://docs.aws.amazon.com/lex/latest/dg/how-it-works.html
https://aws.amazon.com/about-aws/global-infrastructure/regional-product-services/

AWS Mobile Developer Guide
Natural Language (Amazon Lex)

<uses-permission android:name="android.permission.INTERNET" />
<uses-permission android:name="android.permission.ACCESS_NETWORK_STATE" />
<uses-permission android:name="android.permission.RECORD_AUDIO" />

Declare Amazon Lex as a Gradle dependency

Make sure the following Gradle build dependency is declared in the app/build.gradle file.

implementation 'com.amazonaws:aws-android-sdk-lex:2.3.8@aar’

Set IAM Permissions for Amazon Lex

To use Amazon Lex in an application, create a role and attach policies as described in Step 1 of Getting
Started in the Lex Developer Guide.

To learn more about IAM policies, see Using IAM.
Configure a Bot

Use the Amazon Lex console console to configure a bot that interacts with your mobile app features. To
learn more, see Amazon Lex Developer Guide. For a quickstart, see Getting Started .

Amazon Lex also supports model building APIs, which allow creation of bots, intents, and slots at
runtime. This SDK does not currently offer additional support for interacting with Amazon Lex model
building APIs.

Implement Text and Voice Interaction with Amazon Lex

Get AWS User Credentials

Both text and voice API calls require validated AWS credentials. To establish Amazon Cognito as the
credentials provider, include the following code in the function where you initialize your Amazon Lex

interaction objects.

Android - Java

CognitoCredentialsProvider credentialsProvider =
new CognitoCredentialsProvider(
appContext.getResources().getString(R.string.identity_id_test),
Regions.fromName(appContext.getResources().getString(R.string.aws_region))

)i

Android - Kotlin

val region = applicationContext.resources.getString(R.string.aws_region)

val credentialsProvider = CognitoCredentialsProvider
applicationContext.resources.getString(R.string.identity_id_test),
Regions.fromName(region))

Integrate Lex Interaction Client
Perform the following tasks to implement interaction with Lex in your Android app.
Initialize Your Lex Interaction Client

Instantiate an InteractionClient, providing the following parameters.

273

http://docs.aws.amazon.com/lex/latest/dg/gs-bp-prep.html
http://docs.aws.amazon.com/lex/latest/dg/gs-bp-prep.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/IAM_Introduction.html
https://console.aws.amazon.com/lex/
http://docs.aws.amazon.com/lex/latest/dg/what-is.html
https://alpha-docs-aws.amazon.com/lex/latest/dg/getting-started.html

AWS Mobile Developer Guide
Natural Language (Amazon Lex)

« The application context, credentials provider, and AWS Region

« bot_name - name of the bot as it appears in the Amazon Lex console

e bot_alias - the name associated with selected version of your bot

« InteractionListener - your app's receiver for text responses from Amazon Lex

« AudioPlaybackListener - your app's receiver for voice responses from Amazon Lex

Android - Java

// Create Lex interaction client.
lexInteractionClient = new InteractionClient(getApplicationContext(),
credentialsProvider,
Regions.US_EAST_1,
<your_bot_name>,
<your_bot_alias>);
lexInteractionClient.setAudioPlaybackListener(audioPlaybackListener);
lexInteractionClient.setInteractionListener(interactionListener);

Android - Kotlin

// Create Lex interaction client.
val lexInteractionClient = InteractionClient(applicationContext,
credentialsProvider,
Regions.US_EAST_1,
<your_bot_name>,
<your_bot_alias>)
lexInteractionClient.audioPlaybackListener = audioPlaybackListener
lexInteractionClient.interactionListener = interactionListener

Begin or Continue a Conversation

To begin a new conversation with Amazon Lex, we recommend that you clear any history of previous
text interactions, and that you maintain a inConversation flag to make your app aware of when a
conversation is in progress.

If inConversation is false when user input is ready to be sent as Amazon Lex input, then
make a call using the textInForTextOut, textInForAudioOut, audioInForTextOut, or
audioInForAudioOut method of an InteractionClient instance. These calls are in the form of:

Android - Java

lexInteractionClient.textInForTextOut(
String text,
Map<String, String> sessionAttributes)

Android - Kotlin

lexInteractionClient.textInForTextOut(
text: String,
sessionAttributes: Map<String,String>)

If inConversation is true, then the input should be passed to an instance of
LexServiceContinuation using the continueWithTextInForTextOut,
continueWithTextInForAudioOut, continueWithAudioInForTextOut,
continueWithAudioInForAudioOut method. Continuation enables Amazon Lex to persist the state
and metadata of an ongoing conversation across multiple interactions.

274

AWS Mobile Developer Guide
Natural Language (Amazon Lex)

Interaction Response Events
InteractionListener captures a set of Amazon Lex response events that include:

e onReadyForFulfillment(final Response response)

This response means that Lex has the information it needs to co fulfill the intent of the user and
considers the transaction complete. Typically, your app would set your inConversation flag to false
when this response arrives.

» promptUserToRespond(final Response response, final LexServiceContinuation
continuation)

This response means that Amazon Lex is providing the next piece of information needed in the
conversation flow. Typically your app would pass the received continuation on to your Amazon Lex
client.

e onInteractionError(final Response response, final Exception e)

This response means that Amazon Lex is providing an identifier for the exception that has occured.

Microphone Events

MicrophoneListener captures events related to the microphone used for interaction with Amazon Lex
that include:

 startedRecording()

This event occurs when the user has started recording their voice input to Amazon Lex.

e onRecordingEnd()

This event occurs when the user has finished recording their voice input to Amazon Lex.
* onSoundLevelChanged(double soundLevel)

This event occurs when the volume level of audio being recorded changes.

e onMicrophoneError(Exception e)

The event returns an exception when an error occurs while recording sound through the microphone.

Audio Playback Events
AudioPlaybackListener captures a set of events related to Amazon Lex voice responses that include:
e onAudioPlaybackStarted()

This event occurs when playback of a Amazon Lex voice response starts.
e onAudioPlayBackCompleted()

This event occurs when playback of a Amazon Lex voice response finishes.

e onAudioPlaybackError(Exception e)

This event returns an exception when an error occurs duringplayback of an Amazon Lex voice response.

Add Voice Interactons
Perform the following tasks to implement voice interaction with Amazon Lex in your Android app.

InteractiveVoiceView simplifies the acts of receiving and playing voice responses from Lex
by internally using the InteractionClient methods and both MicrophoneListener and

275

AWS Mobile Developer Guide
Natural Language (Amazon Lex)

AudioPlaybackListener events described in the preceding sections. You can use those interfaces
directly instead of instantiating InteractiveVoiceView.

Add a voice-component Layout Element to Your Activity

In the layout for your activity class that contains the voice interface for your app, include the following
element.

<include
android:id="@+id/voicelInterface"
layout="e@layout/voice_component"
android:layout_width="200dp"
android:layout_height="200dp"
/>

Initialize Your Voice Activity

In your activity class that contains the voice interface for your app, have the base class implement
InteractiveVoiceView.InteractiveVoiceListener.

The following code shows initialization of InteractivevVoiceView.

Android - Java

private void init() {
appContext = getApplicationContext();
voiceView = (InteractiveVoiceView) findViewById(R.id.voiceInterface);
voiceView.setInteractiveVoiceListener(this);
CognitoCredentialsProvider credentialsProvider = new CognitoCredentialsProvider(
<your_conginto_identity_pool_id>,

Regions.fromName(<your_aws_region>)));
voiceView.getViewAdapter().setCredentialProvider(credentialsProvider);
voiceView.getViewAdapter().setInteractionConfig(

new InteractionConfig(<your_bot_name>), <your_bot_alias>));
voiceView.getViewAdapter().setAwsRegion(<your_aws_region>));

Android - Kotlin

private fun init() {
val voiceView = voiceInterface as InteractiveVoiceView
val cp = CognitoCredentialsProvider (IDENTITY POOL_ID, REGION)
with (voiceView.viewAdapter) {
credentialsProvider = cp
setInteractionConfig(InteractionConfig(<your_bot_name>), <your_bot_alias>)
setAwsRegion(REGION)

}

iOS: Use Natural Language with Amazon Lex

Just Getting Started? Use streamlined steps (p. 84) to install the SDK
and integrate Amazon Lex.

Or, use the contents of this page if your app will integrate existing AWS services.

276

AWS Mobile Developer Guide
Natural Language (Amazon Lex)

Overview

Amazon Lex is an AWS service for building voice and text conversational interfaces into applications.
With Amazon Lex, the same natural language understanding engine that powers Amazon Alexa is now
available to any developer, enabling you to build sophisticated, natural language chatbots into your new
and existing applications.

The AWS Mobile SDK for iOS provides an optimized client for interacting with Amazon Lex runtime APIs,
which support both voice and text input and can return either voice or text. Included are features like
APIs to support detecting when a user finishes speaking and encoding incoming audio to the format the
Amazon Lex service prefers.

Amazon Lex has built-in integration with AWS Lambda to allow insertion of custom business logic into
your Amazon Lex processing flow, including all of the extension to other services that Lambda makes
possible.

For information on Amazon Lex concepts and service configuration, see How it Works in the Amazon Lex
Developer Guide.

To get started using the Amazon Lex mobile client for iOS, you'll need to integrate the SDK for iOS into
your app, set the appropriate permissions, and import the necessary libraries.

Setting Up

Include the SDK in Your Project

Follow the instructions on the Set Up the SDK for iOS page to include the frameworks for this service.
Set IAM Permissions for Amazon Lex

To use Amazon Lex in an application, create a role and attach policies as described in Step 1 of Getting
Started in the Amazon Lex Developer Guide.

To learn more about IAM policies, see Using IAM.
Configure a Bot

Use the Amazon Lex console console to configure a bot that interacts with your mobile app features. To
learn more, see Amazon Lex Developer Guide. For a quickstart, see Getting Started .

Amazon Lex also supports model building APIs, which allow creation of bots, intents, and slots at
runtime. This SDK does not currently offer additional support for interacting with Amazon Lex model
building APIs.

Implement Text and Voice Interaction with Amazon Lex

Add Permissions and Get Credentials

Take the following steps to allow your app to access device resources and AWS services.
Add permission to use the microphone

To add permission to use the microphone to enable users to speak to Amazon Lex through your app,
open your project's Info.plist file using Right-click > Open As > Source Code, and then add the
following entry.

<plist version="1.0">
<dict>
<key>NSMicrophoneUsageDescription</key>

<string>For interaction with Amazon Lex</string>
</dict>

277

http://docs.aws.amazon.com/lex/latest/dg/how-it-works.html
http://docs.aws.amazon.com/mobile/sdkforios/developerguide/setup.html
http://docs.aws.amazon.com/lex/latest/dg/gs-bp-prep.html
http://docs.aws.amazon.com/lex/latest/dg/gs-bp-prep.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/IAM_Introduction.html
https://console.aws.amazon.com/lex/
http://docs.aws.amazon.com/lex/latest/dg/what-is.html
https://alpha-docs-aws.amazon.com/lex/latest/dg/getting-started.html

AWS Mobile Developer Guide
Natural Language (Amazon Lex)

</plist>

Integrating the Interaction Client
Take the following steps to integrate the Amazon Lex interaction client with your app.
Initialize the InteractionKit for voice and text

Add the following code using the name and alias of your Lex bot to initialize an instance of
InteractionKit.

iOS - Swift

let chatConfig = AWSLexInteractionKitConfig.defaultInteractionKitConfig(withBotName:
BotName, botAlias: BotAlias)

// interaction kit for the voice button
AWSLexInteractionKit.register(with: configuration!, interactionKitConfiguration:
chatConfig, forKey: "AWSLexVoiceButton")

chatConfig.autoPlayback = false
// interaction kit configuration for the client

AWSLexInteractionKit.register(with: configuration!, interactionKitConfiguration:
chatConfig, forKey: "chatConfig")

Objective C

AWSLexInteractionKitConfig *chatConfig = [AWSLexInteractionKitConfig
defaultInteractionKitConfigWithBotName:BotName botAlias:BotAlias];

chatConfig.autoPlayback = NO;

[AWSLexInteractionKit registerInteractionKitWithServiceConfiguration:configuration
interactionKitConfiguration:chatConfig forKey:AWSLexChatConfigIdentifierKey];

Implement InteractionKit delegate methods

Declare and implement the following methods in the class where you intend to use your InteractionKit:

« interactionKit is called to begin a conversation. When passed interactionKit,
switchModeInput, and completionSource, the function should set the mode of interaction (audio
or text input and output) and pass the switchModeResponse to the completionSource. On error,
the interactionKit.onError method is called.

iOS - Swift

public func interactionKit(_ interactionKit: AWSLexInteractionKit, switchModeInput:
AWSLexSwitchModeInput, completionSource:
AWSTaskCompletionSource<AWSLexSwitchModeResponse>?)

public func interactionKit(_ interactionKit: AWSLexInteractionKit, onError error:
Error)

Objective C

- (void)interactionKit:(AWSLexInteractionKit *)interactionKit
switchModeInput: (AWSLexSwitchModeInput *)switchModeInput
completionSource: (AWSTaskCompletionSource<AWSLexSwitchModeResponse *>
*)completionSource

278

AWS Mobile Developer Guide
Natural Language (Amazon Lex)

- (void)interactionKit:(AWSLexInteractionKit *)interactionKit
onError: (NSError *)error~

interactionKitContinue is called to continue an ongoing conversation with its transaction state
and metadata maintained.

iOS - Swift

func interactionKitContinue(withText interactionKit: AWSLexInteractionKit,
completionSource: AWSTaskCompletionSource<NSString>){
textModeSwitchingCompletion = completionSource

Objective C

- (void)interactionKitContinueWithText:(AWSLexInteractionKit *)interactionKit
completionSource: (AWSTaskCompletionSource<NSString *> *)completionSource{
textModeSwitchingCompletion = completionSource;

}

Alternatively, you can explicitly set SwitchModeResponse to a selected mode.
i0S - Swift

let switchModeResponse = AWSLexSwitchModeResponse()
switchModeResponse.interactionMode = AWSLexInteractionMode.text
switchModeResponse.sessionAttributes = switchModeInput.sessionAttributes
completionSource?.setResult(switchModeResponse)

Objective C

AWSLexSwitchModeResponse *switchModeResponse = [AWSLexSwitchModeResponse new];
[switchModeResponse setInteractionMode:AWSLexInteractionModeText];
[switchModeResponse setSessionAttributes:switchModeInput.sessionAttributes];
[completionSource setResult:switchModeResponse];

Begin or Continue a Conversation

When you call InteractionKit to provide input for a conversation, check if the conversation is already
in progress by examining the state of AWSTaskCompletionSource. The following example illustrates

the case where textModeSwitchingCompletion is an AWSTaskCompletionSource instance and the
desired result is that a new conversation will be in the texttInTextOut mode.

iOS - Swift

if let textModeSwitchingCompletion = textModeSwitchingCompletion {
textModeSwitchingCompletion.setResult(text)
self.textModeSwitchingCompletion = nil

}
else {
self.interactionKit?.textInTextOut(text)
}
Objective C

if(textModeSwitchingCompletion){
[textModeSwitchingCompletion setResult:text];

279

AWS Mobile Developer Guide
Speech to Text (Amazon Polly)

textModeSwitchingCompletion = nil;
}else{
[self.interactionKit textInTextOut:text];

Integrating Voice Conversation
Perform the following tasks to implement voice interaction with Amazon Lex in your iOS app.
Add a voice button and bind it to the Lex SDK Ul component

Add a voice UlView into your storyboard scene or xib file, add a voice button (the Ul element that
enables users to speak to Amazon Lex). Map the voice button to the SDK button component by setting
the class for the voice UlView to AWSLexVoiceButton as illustrated in the following image.

Custom Class

Class AWSLexVoiceButten © E

Regioration 1D

ser Defined Runtime Attributes
Key Path Type Value

+
Document
Label
»
Object 1D T22-Q4-9¢l
Lock | Inherited - {Nothing) E
Notes = === - [] -]

-
w

Accessibllity
Accessibility || Enabled
Label

0D 06

View Controller - A controlier
that manages a view.

Storyboard Reference -
Provides a placenclder for a view
contraller in an external storyboard,

View - Represents a rectangular
region in which it draws and
receives events.

vAny hARY B3 1= 1o tai | B5 & uiview (]

Convert Text to Speech with Amazon Polly

What is Amazon Polly?

Amazon Polly is a service that turns text into lifelike speech, making it easy to develop mobile
applications that use high-quality speech to increase engagement and accessibility. With Amazon Polly
you can quickly build speech-enabled apps that work in multiple geographies.

280

AWS Mobile Developer Guide
Data Streaming (Amazon Kinesis)

Using the following resources, you can integrate Amazon Polly with your iOS app to add text to speech
transformation. No deep knowledge of either AWS services or natural language computing is needed.

For information on Amazon Polly concepts and service configuration, see How it Works in the Amazon
Polly Developer Guide.

ANDROID

« For sample Android integration code, see the Android Amazon Polly Example.
« For end to end sample apps using Amazon Polly see the AWS SDK for Android samples.

ioS

« For sample iOS integration code, see the iOS Amazon Polly Example.
« For more end to end sample apps using Amazon Polly see the AWS SDK for iOS samples.

How To Stream Data with Amazon Kinesis

This section provides information on the steps for achieving specific tasks for integrating your Amazon
Kinesis into your Android and iOS apps.

Topics
« Android: Process Data Streams with Kinesis (p. 281)
« ios: Process Data Streams with Amazon Kinesis (p. 286)

Android: Process Data Streams with Kinesis

Overview

Amazon Kinesis is a fully managed service for real-time processing of streaming data at massive scale.
Kinesis can collect and process hundreds of terabytes of data per hour from hundreds of thousands of
sources, so you can write applications that process information in real-time. With Kinesis applications,
you can build real-time dashboards, capture exceptions and generate alerts, drive recommendations, and
make other real-time business or operational decisions. You can also easily send data to other services
such as Amazon Simple Storage Service, Amazon DynamoDB, and Amazon Redshift.

The AWS Mobile SDK for Android provides simple, high-level clients designed to help you interface with
Kinesis. The Kinesis clients let you store streaming data on disk and then send them all at once. This is
useful because many mobile applications that use Kinesis will create multiple data requests per second.
Sending one data request for each action could adversely impact battery life. Moreover, the requests
could be lost if the device goes offline. Thus, using the high-level Kinesis client for batching can preserve
both battery life and data.

For information about Kinesis Region availability, see AWS Service Region Availability.

To get started using the Amazon Kinesis mobile client, you'll need to integrate the SDK for Android into
your app, set the appropriate permissions, and import the necessary libraries.

What is Kinesis Data Firehose?

Amazon Kinesis Data Firehose is a fully managed service for delivering real-time streaming data to
destinations such as Amazon S3 and Amazon Redshift. With Kinesis Data Firehose, you do not need
to write any applications or manage any resources. You configure your data producers to send data to
Firehose and it automatically delivers the data to the destination that you specified.

281

http://docs.aws.amazon.com/polly/latest/dg/how-text-to-speech-works.html
http://docs.aws.amazon.com/polly/latest/dg/examples-android.html
https://github.com/awslabs/aws-sdk-android-samples/
http://docs.aws.amazon.com/polly/latest/dg/examples-ios.html
https://github.com/awslabs/aws-sdk-ios-samples/
https://aws.amazon.com/kinesis/
https://aws.amazon.com/about-aws/global-infrastructure/regional-product-services/
https://aws.amazon.com/kinesis/firehose/

AWS Mobile Developer Guide
Data Streaming (Amazon Kinesis)

KinesisFirehoseRecorder is the high level client for Kinesis Data Firehose. Its usage is very similar to that
of KinesisRecorder.

For more information about Kinesis Data Firehose, see Amazon Kinesis Firehose.

You can also learn more about how the Kinesis services work together on the following page: Amazon
Kinesis services.

Getting Started

Create an Identity Pool

To use AWS services in your mobile application, you must obtain AWS Credentials using Amazon
Cognito Identity as your credential provider. Using a credentials provider allows you to access AWS
services without having to embed your private credentials in your application. This also allows you to set
permissions to control which AWS services your users have access to.

The identities of your application's users are stored and managed by an identity pool, which is a store
of user identity data specific to your account. Every identity pool has roles that specify which AWS
resources your users can access. Typically, a developer will use one identity pool per application. For
more information on identity pools, see the Cognito Developer Guide.

To create an identity pool for your application:

1. Log in to the Cognito Console and click Create new identity pool.

2. Enter a name for your Identity Pool and check the checkbox to enable access to unauthenticated
identities. Click Create Pool to create your identity pool.

3. Click Allow to create the roles associated with your identity pool.

The next page displays code that creates a credentials provider so you can easily integrate Amazon
Cognito Identity in your Android application.

For more information on Cognito Identity, see cognito-auth.

Set IAM Permissions (Amazon Kinesis)

To use Amazon Kinesis in an application, you must set the correct permissions. The following IAM policy
allows the user to submit records to a Kinesis stream identified by ARN:

{
"Statement": [{
"Effect": "Allow",
"Action": "kinesis:PutRecords",
"Resource": "arn:aws:kinesis:us-west-2:111122223333:stream/mystream"
]
}

This policy should be applied to roles assigned to the Cognito identity pool, but you will need to replace
the Resource value with the correct ARN for your Kinesis stream. You can apply policies at the IAM
console.

Set IAM Permissions (Amazon Kinesis Firehose)

Amazon Kinesis Firehose needs slightly different permission. The following IAM policy allows the user to
submit records to an Amazon Kinesis Firehose stream identified by the Amazon Resource Name (ARN):

"Statement": [{

282

http://docs.aws.amazon.com/firehose/latest/dev/what-is-this-service.html
https://aws.amazon.com/kinesis/
https://aws.amazon.com/kinesis/
http://docs.aws.amazon.com/cognito/devguide/identity/identity-pools/
https://console.aws.amazon.com/cognito/home
http://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

AWS Mobile Developer Guide
Data Streaming (Amazon Kinesis)

"Effect": "Allow",
"Action": "firehose:PutRecordBatch",
"Resource": "arn:aws:firehose:us-west-2:111122223333:deliverystream/mystream"

i3

For more information about ARN formatting and example policies, see Amazon Resource Names for
Amazon Kinesis.

To learn more about Kinesis-specific policies, see Controlling Access to Amazon Kinesis Resources with
IAM.

To learn more about IAM policies, see Using IAM.
Include the SDK in Your Project

Follow the instructions on the Set Up the SDK for Android page to include the proper JAR files for this
service and set the appropriate permissions.

Set Permissions in Your Android Manifest

In your AndroidManifest.xml file, add the following permission:

<uses-permission android:name="android.permission.INTERNET" />

Add Import Statements

Add the following imports to the main activity of your app.

import com.amazonaws.mobileconnectors.kinesis.kinesisrecorder.*;
import com.amazonaws.auth.CognitoCachingCredentialsProvider;
import com.amazonaws.regions.Regions;

Instantiate a Kinesis recorder

Once you've imported the necessary libraries and have your credentials object, you can instantiate
KinesisRecorder. KinesisRecorder is a high-level client meant for storing PutRecord requests on
an Android device. Storing requests on the device lets you retain data when the device is offline, and it
can also increase performance and battery efficiency since the network doesn't need to be awakened as
frequently.

Note
KinesisRecorder uses synchronous calls, so you shouldn't call KinesisRecorder methods
on the main thread.

When you create the KinesisRecorder client, you'll pass in a directory and an AWS region. The
directory should be empty the first time you instantiate KinesisRecorder; it should be private

to your application; and, to prevent collision, it should be used only by KinesisRecorder. The
following snippet creates a directory and instantiates the KinesisRecorder client, passing in a Cognito
credentials object (cognitoProvider), a region enum, and the directory.

Android - Java

String kinesisDirectory = "YOUR_UNIQUE_DIRECTORY";
KinesisRecorder recorder = new KinesisRecorder(
myActivity.getDir(kinesisDirectory, 0),
Regions.US_WEST_2,
credentialsProvider

M

283

http://docs.aws.amazon.com/kinesis/latest/dev/kinesis-using-iam.html#kinesis-using-iam-arn-format
http://docs.aws.amazon.com/kinesis/latest/dev/kinesis-using-iam.html#kinesis-using-iam-arn-format
http://docs.aws.amazon.com/kinesis/latest/dev/kinesis-using-iam.html
http://docs.aws.amazon.com/kinesis/latest/dev/kinesis-using-iam.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/IAM_Introduction.html
http://docs.aws.amazon.com/mobile/sdkforandroid/developerguide/setup.html

AWS Mobile Developer Guide
Data Streaming (Amazon Kinesis)

You'll use KinesisRecorder to save records and then send them in a batch.

recorder.saveRecord("MyData".getBytes(), "MyStreamName");
recorder.submitAllRecords();

Note
For the saveRecord() request above to work, you would have to have created a stream
named MyStreamName. You can create new streams in the Amazon Kinesis console.

If submitAllRecords() is called while the app is online, requests will be sent and removed from
the disk. If submitAl1lRecords() is called while the app is offline, requests will be kept on disk
until submitAllRecords() is called while online. This applies even if you lose your internet
connection midway through a submit. So if you save ten requests, call submitAllRecords(), send
five, and then lose the Internet connection, you have five requests left on disk. These remaining five
will be sent the next time submitAl1lRecords() is invoked online.

To see how much space the KinesisRecorder client is allowed to use, you can call
getDiskByteLimit().

Long byteLimit = recorder.getDiskByteLimit();
// Do something with byteLimit

Alternatively, you can retrieve the same information by getting the KinesisRecorderConfig
object for the recorder and calling getMaxStorageSize():

KinesisRecorderConfig kinesisRecorderConfig = recorder.getKinesisRecorderConfig();
Long maxStorageSize = kinesisRecorderConfig.getMaxStorageSize();
// Do something with maxStorageSize

Android - Kotlin

val recorder = KinesisRecorder(
myActivity.getDir("YOUR_UNIQUE_DIRECTORY", 0),
Regions.US_WEST_2,
credentialsProvider)

You'll use KinesisRecorder to save records and then send them in a batch.

recorder.saveRecord("MyData".getBytes(), "MyStreamName")
recorder.submitAllRecords()

Note
For the saveRecord() request above to work, you would have to have created a stream
named MyStreamName. You can create new streams in the Amazon Kinesis console.

If submitAllRecords() is called while the app is online, requests will be sent and removed from
the disk. If submitAllRecords() is called while the app is offline, requests will be kept on disk
until submitAllRecords() is called while online. This applies even if you lose your internet
connection midway through a submit. So if you save ten requests, call submitAllRecords(), send
five, and then lose the Internet connection, you have five requests left on disk. These remaining five
will be sent the next time submitAllRecords() is invoked online.

To see how much space the KinesisRecorder client is allowed to use, you can call
getDiskByteLimit().

val byteLimit = recorder.diskByteLimit

284

https://console.aws.amazon.com/kinesis
https://console.aws.amazon.com/kinesis

AWS Mobile Developer Guide
Data Streaming (Amazon Kinesis)

// Do something with byteLimit

Alternatively, you can retrieve the same information by getting the KinesisRecorderConfig
object for the recorder and calling getMaxStorageSize():

val maxStorageSize = recorder.kinesisRecorderConfig.maxStorageSize
// Do something with maxStorageSize

Storage limits

If you exceed the storage limit for KinesisRecorder, requests will not be saved or sent.
KinesisRecorderConfig has a default maxStorageSize of 8 MiB. You can configure the maximum
allowed storage via the withMaxStorageSize() method of KinesisRecorderConfig.

To check the number of bytes currently stored in the directory passed in to the KinesisRecoder
constructor, call getDiskBytesUsed():

Android - Java

Long bytesUsed = recorder.getDiskBytesUsed();
// Do something with bytesUsed

Android - Kotlin

val bytesUsed = recorder.diskBytesUsed
// Do something with bytesUsed

To learn more about working with Amazon Kinesis, see Amazon Kinesis Developer Resources. To learn
more about the Kinesis classes, see the APl Reference for the Android SDK.

Use KinesisFirehoseRecorder

To use KinesisFirehoseRecorder, you need to pass the object in a directory where streaming data is
saved. We recommend you use an app private directory because the data is not encrypted.

Android - Java

// Gets a working directory for the recorder

File directory = context.getCachedDir();

// Sets Firehose region

Regions region = Regions.US_WEST_2;

// Initialize a credentials provider to access Amazon Kinesis Firehose

AWSCredentialsProvider provider = new CognitoCachingCredentialsProvider(
context, "identityPoolId",
Regions.US_EAST_1); // region of your Amazon Cognito identity pool

KinesisFirehoseRecorder firehoseRecorder = new KinesisFirehoseRecorder(
directory, region, provider);

// Start to save data, either a String or a byte array
firehoseRecorder.saveRecord("Hello world!\n");

firehoseRecorder.saveRecord("Streaming data to Amazon S3 via Amazon Kinesis Firehose is
easy.\n");

// Send previously saved data to Amazon Kinesis Firehose
// Note: submitAllRecords() makes network calls, so wrap it in an AsyncTask.
new AsyncTask<Void, Void, Void>() {

@Override

protected Void doInBackground(Void... v) {

285

https://aws.amazon.com/kinesis/developer-resources/
http://docs.aws.amazon.com/AWSAndroidSDK/latest/javadoc/

AWS Mobile Developer Guide
Data Streaming (Amazon Kinesis)

try |
firehoseRecorder.submitAllRecords();
} catch (AmazonClientException ace) {
// handle error
}
}

}.execute();

Android - Kotlin

val firehose = KinesisFirehoseRecorder(

context.getCachedDir(), // Working directory for recorder
Regions.US_WEST_2, // Region that Kinesis is provisioned in
credentialsProvider) // AWS Credentials provider

// Start to save data, either a String or a byte array
firehose.saveRecord("Hello world!\n");
firehose.saveRecord("Streaming data to Amazon S3 via Amazon Kinesis Firehose is easy.

\n");

// Send previously saved data to Amazon Kinesis Firehose
// Note: submitAllRecords() makes network calls.
thread(start = true) {
try {
firehose.submitAllRecords()
} catch (ex: AmazonClientException) {
Log.e(TAG, "Error submitting records")

}

To learn more about working with Amazon Kinesis Firehose, see Amazon Kinesis Firehose.

To learn more about the Kinesis Firehose classes, see the APl Reference for the Android SDK.

ios: Process Data Streams with Amazon Kinesis

Overview
Amazon Kinesis is a fully managed service for real-time processing of streaming data at massive scale.

The SDK for iOS provides two high-level client classes, AWSKinesisRecorder and
AWSFirehoseRecorder , designed to help you interface with Amazon Kinesis and Amazon Kinesis
Firehose.

The Amazon Kinesis AWSKinesisRecorder client lets you store PutRecord requests on disk and then
send them all at once. This is useful because many mobile applications that use Amazon Kinesis will
create multiple PutRecord requests per second. Sending an individual request for each PutRecord
action could adversely impact battery life. Moreover, the requests could be lost if the device goes offline.
Thus, using the high-level Amazon Kinesis client for batching can preserve both battery life and data.

The Amazon Kinesis Firehose AWSFirehoseRecorder client lets you store PutRecords requests on disk
and then send them using PutRecordBatch.

For information about Amazon Kinesis Region availability, see AWS Service Region Availability.
What is Amazon Kinesis?

Amazon Kinesis is a fully managed service for real-time processing of streaming data at massive scale.
Amazon Kinesis can collect and process hundreds of terabytes of data per hour from hundreds of
thousands of sources, so you can write applications that process information in real-time. With Amazon

286

http://docs.aws.amazon.com/firehose/latest/dev/what-is-this-service.html
http://docs.aws.amazon.com/AWSAndroidSDK/latest/javadoc/
http://docs.aws.amazon.com/kinesis/latest/APIReference/API_PutRecord.html
http://docs.aws.amazon.com/kinesis/latest/APIReference/API_PutRecords.html
https://aws.amazon.com/about-aws/global-infrastructure/regional-product-services/
https://aws.amazon.com/kinesis/

AWS Mobile Developer Guide
Data Streaming (Amazon Kinesis)

Kinesis applications, you can build real-time dashboards, capture exceptions and generate alerts, drive
recommendations, and make other real-time business or operational decisions. You can also easily
send data to other services such as Amazon Simple Storage Service, Amazon DynamoDB, and Amazon
Redshift.

What is Amazon Kinesis Firehose?

Amazon Kinesis Firehose is a fully managed service for delivering real-time streaming data to
destinations such as Amazon Simple Storage Service (Amazon S3) and Amazon Redshift. With Firehose,
you do not need to write any applications or manage any resources. You configure your data producers to
send data to Firehose and it automatically delivers the data to the destination that you specified.

For more information about Amazon Kinesis Firehose, see Amazon Kinesis Firehose.

You can also learn more about how the Amazon Kinesis services work together on the following page:
Amazon Kinesis services.

Integrating Amazon Kinesis and Amazon Kinesis Firehose

To use the Amazon Kinesis mobile client, you'll need to integrate the SDK for iOS into your app and
import the necessary libraries. To do so, follow these steps:

If you haven't already done so, download the SDK for iOS, unzip it, and include it in your application as
described at setup-aws-sdk-for-ios. The instructions direct you to import the headers for the services
you'll be using. For this example, you need the following import.

Swift

import AWSKinesis

Objective-C

#import <AWSKinesis/AWSKinesis.h>

You can use Amazon Cognito to provide temporary AWS credentials to your application.

These credentials let the app access your AWS resources. To create a credentials provider, follow the
instructions at Cognito Identity Developer Guide.

To use Amazon Kinesis in an application, you must set the correct permissions. The following IAM policy
allows the user to submit records to a specific Amazon Kinesis stream, which is identified by ARN.

{
"Statement": [{
"Effect": "Allow",
"Action": "kinesis:PutRecords",
"Resource": "arn:aws:kinesis:us-west-2:111122223333:stream/mystream"
]
}

The following IAM policy allows the user to submit records to a specific Amazon Kinesis Firehose stream.

"Statement": [{
"Effect": "Allow",
"Action": "firehose:PutRecordBatch",
"Resource": "arn:aws:firehose:us-west-2:111122223333:deliverystream/mystream"

i3

287

https://aws.amazon.com/kinesis/firehose/
http://docs.aws.amazon.com/firehose/latest/dev/what-is-this-service.html
https://aws.amazon.com/kinesis/
https://aws.amazon.com/mobile/sdk/
http://docs.aws.amazon.com/cognito/devguide/identity/
http://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html

AWS Mobile Developer Guide
Data Streaming (Amazon Kinesis)

}

This policy should be applied to roles assigned to the Amazon Cognito identity pool, but you will need to
replace the Resource value with the correct ARN for your Amazon Kinesis or Amazon Kinesis Firehose
stream. You can apply policies at the IAM console. To learn more about IAM policies, see Using IAM.

To learn more about Amazon Kinesis-specific policies, see Controlling Access to Amazon Kinesis
Resources with IAM.

To learn more about Amazon Kinesis Firehose policies, see Controlling Access with Amazon Kinesis
Firehose.

Once you have credentials, you can use AWSKinesisRecorder with Amazon Kinesis. The following
snippet returns a shared instance of the Amazon Kinesis service client:

Swift

let kinesisRecorder = AWSKinesisRecorder.default()

Objective-C

AWSKinesisRecorder *kinesisRecorder = [AWSKinesisRecorder defaultKinesisRecorder];

You can use AWSFirehoseRecorder with Amazon Kinesis Firehose. The following snippet returns a
shared instance of the Amazon Kinesis Firehose service client:

Swift

let firehoseRecorder = AWSFirehoseRecorder.default()

Objective-C

AWSFirehoseRecorder *firehoseRecorder = [AWSFirehoseRecorder defaultFirehoseRecorder];

You can configure AWSKinesisRecorder or AWSFirehoseRecorder through their properties:

Swift

kinesisRecorder.diskAgeLimit = TimeInterval(30 * 24 * 60 * 60); // 30 days
kinesisRecorder.diskByteLimit = UInt(10 * 1024 * 1024); // 10MB
kinesisRecorder.notificationByteThreshold = UInt(5 * 1024 * 1024); // 5MB

Objective-C

kinesisRecorder.diskAgeLimit = 30 * 24 * 60 * 60; // 30 days
kinesisRecorder.diskByteLimit = 10 * 1024 * 1024; // 10MB
kinesisRecorder.notificationByteThreshold = 5 * 1024 * 1024; // 5MB

The diskAgeLimit property sets the expiration for cached requests. When a request exceeds the limit,
it's discarded. The default is no age limit. The diskByteLimit property holds the limit of the disk
cache size in bytes. If the storage limit is exceeded, older requests are discarded. The default value is 5
MB. Setting the value to 0 means that there's no practical limit. The notficationByteThreshold
property sets the point beyond which Kinesis issues a notification that the byte threshold has been
reached. The default value is 0, meaning that by default Amazon Kinesis doesn't post the notification.

288

https://console.aws.amazon.com/iam/
http://docs.aws.amazon.com/IAM/latest/UserGuide/IAM_Introduction.html
http://docs.aws.amazon.com/kinesis/latest/dev/kinesis-using-iam.html
http://docs.aws.amazon.com/kinesis/latest/dev/kinesis-using-iam.html
http://docs.aws.amazon.com/firehose/latest/dev/controlling-access.html
http://docs.aws.amazon.com/firehose/latest/dev/controlling-access.html

AWS Mobile Developer Guide
Data Streaming (Amazon Kinesis)

To see how much local storage is being used for Amazon Kinesis PutRecord requests, check the
diskBytesUsed property.

With AwSKinesisRecorder created and configured, you can use saveRecord:streamName: to
save records to local storage.

Swift

let yourData = "Test_data".data(using: .utf8)
kinesisRecorder.saveRecord(yourData, streamName: "YourStreamName")

Objective-C

NSData *yourData = [@"Test_data" dataUsingEncoding:NSUTF8StringEncoding];
[kinesisRecorder saveRecord:yourData streamName:@"YourStreamName"]

In the preceding example, we create an NSData object and save it locally. YourStreamName should be
a string corresponding to the name of your Kinesis stream. You can create new streams in the Amazon
Kinesis console.

Here is a similar snippet for Amazon Kinesis Firehose:

Swift

let yourData = "Test_data".data(using: .utf8)
firehoseRecorder.saveRecord(yourData, streamName: "YourStreamName")

Objective-C

NSData *yourData = [@"Test_data" dataUsingEncoding:NSUTF8StringEncoding];
[firehoseRecorder saveRecord:yourData streamName:@"YourStreamName"]

To submit all the records stored on the device, call submitAllRecords .

Swift

kinesisRecorder.submitAllRecords()

firehoseRecorder.submitAllRecords()

Objective-C

[kinesisRecorder submitAllRecords];

[firehoseRecorder submitAllRecords];

submitAllRecords sends all locally saved requests to the Amazon Kinesis service. Requests that are
successfully sent will be deleted from the device. Requests that fail because the device is offline will be
kept and submitted later. Invalid requests are deleted.

Both saveRecord and submitAllRecords are asynchronous operations, so you should ensure that
saveRecord is complete before you invoke submitAllRecords . The following code sample shows
the methods used correctly together.

289

https://console.aws.amazon.com/kinesis/
https://console.aws.amazon.com/kinesis/

AWS Mobile Developer Guide
Data Sync (AWS Cognito Sync)

Swift

Obj

// Create an array to store a batch of objects.
var tasks = Array<AWSTask<AnyObject>>()
for i in 0...100 {
tasks.append(kinesisRecorder!.saveRecord(String(format: "TestString-%024",
i).data(using: .utf8), streamName: "YourStreamName")!)

}

AWSTask(forCompletionOfAllTasks: tasks).continueOnSuccessWith(block:
{ (task:AWSTask<AnyObject>) -> AWSTask<AnyObject>? in
return kinesisRecorder?.submitAllRecords()
}).continueWith(block: { (task:AWSTask<AnyObject>) -> Any? in
if let error = task.error as? NSError {
print("Error: \(error)")

}

return nil
D)
ective-C

// Create an array to store a batch of objects.
NSMutableArray *tasks = [NSMutableArray new];
for (int32_t i = 0; i < 100; i++) {
[tasks addObject:[kinesisRecorder saveRecord:[[NSString
stringWithFormat:@"TestString-%02d", i] dataUsingEncoding:NSUTF8StringEncoding]
streamName:@"YourStreamName"]];
}
[[[AWSTask taskForCompletionOfAllTasks:tasks] continueWithSuccessBlock:/*id(AWSTask
*task) {
return [kinesisRecorder submitAllRecords];
}] continueWithBlock:2id(AWSTask *task) {
if (task.error) {
NSLog(@"Error: [%@]", task.error);
}
return nil;

1;

To learn more about working with Amazon Kinesis, see the Amazon Kinesis Developer Resources.

To learn more about the Amazon Kinesis classes, see the class reference for AWSKinesisRecorder.

For

information about AWS service region availability, see AWS Service Region Availability.

How To: Sync Data with Amazon Cognito Sync

New User? Use AWS AppSync instead. AppSync is a new

service for synchronizing application data across
devices. Like Cognito Sync, AppSync enables
synchronization of a user's own data, such as
game state or app preferences. AppSync extends
these capabilities by allowing multiple users

to synchronize and collaborate in real-time on
shared data, such as a virtual meeting space or
chatroom.

Start building with AWS AppSync now.

290

https://aws.amazon.com/kinesis/developer-resources/
http://docs.aws.amazon.com/AWSiOSSDK/latest/Classes/AWSKinesisRecorder.html
https://aws.amazon.com/about-aws/global-infrastructure/regional-product-services/
https://aws.amazon.com/appsync/
https://aws.amazon.com/appsync/

AWS Mobile Developer Guide
Data Sync (AWS Cognito Sync)

Existing Cognito Sync users can find documentation here:

Topics
« Android: Sync Data with Amazon Cognito Sync (p. 291)
« i0S: Sync Data with Amazon Cognito Sync (p. 292)

Android: Sync Data with Amazon Cognito Sync

New User? Use AWS AppSync instead. AppSync is a new
service for synchronizing application data across
devices. Like Cognito Sync, AppSync enables
synchronization of a user's own data, such as
game state or app preferences. AppSync extends
these capabilities by allowing multiple users
to synchronize and collaborate in real-time on
shared data, such as a virtual meeting space or
chatroom.

Start building an Android app with AWS AppSync
now.

Overview

Amazon Cognito Sync is an AWS service and client library that enables cross-device syncing of
application-related user data. You can use the Amazon Cognito Sync API to synchronize user profile data
across devices and across login providers—Amazon, Facebook, Twitter/Digits, Google, and your own
custom identity provider.

For instructions on how to integrate Amazon Cognito Sync in your application, see Amazon Cognito Sync
Developer Guide.

Set Up the SDK

You must complete all of the instructions on the Android: Setup Options for the SDK (p. 133) page
before beginning this tutorial.

Initialize the CognitoSyncManager

Pass your initialized Amazon Cognito credentials provider to the CognitoSyncManager constructor:

CognitoSyncManager client = new CognitoSyncManager(
getApplicationContext(),
Regions.YOUR_REGION,
credentialsProvider);

For more information about Cognito Identity, see cognito-auth-legacy.
Syncing User Data

To sync unauthenticated user data:

1. Create a dataset and add user data.
2. Synchronize the dataset with the cloud.

291

https://aws.amazon.com/appsync/
http://docs.aws.amazon.com/appsync/latest/devguide/building-a-client-app-android.html
http://docs.aws.amazon.com/appsync/latest/devguide/building-a-client-app-android.html
http://docs.aws.amazon.com/cognito/devguide/sync/
http://docs.aws.amazon.com/cognito/devguide/sync/

AWS Mobile Developer Guide
Data Sync (AWS Cognito Sync)

Create a Dataset and Add User Data

Synchronize Dataset with the Cloud

To synchronize a dataset, call its synchronize method:

dataset.synchronize();

All data written to datasets will be stored locally until the dataset is synced. The code in this section
assumes you are using an unauthenticated Cognito identity, so when the user data is synced with the
cloud it will be stored per device. The device has a device ID associated with it. When the user data is
synced to the cloud, it will be associated with that device ID.

To sync user data across devices (using an authenticated identity), see Amazon Cognito Sync.

iOS: Sync Data with Amazon Cognito Sync

New User? Use AWS AppSync instead. AppSync is a new
service for synchronizing application data across
devices. Like Cognito Sync, AppSync enables
synchronization of a user's own data, such as
game state or app preferences. AppSync extends
these capabilities by allowing multiple users
to synchronize and collaborate in real-time on
shared data, such as a virtual meeting space or
chatroom.

Start building an iOS app with AWS AppSync now.

Authenticate Users with Amazon Cognito Identity

Amazon Cognito Identity provides secure access to AWS services. Identities are managed by an identity
pool. Roles specify resources an identity can access and are associated with an identity pool. To create an
identity pool for your application:

1. Log into the Amazon Cognito console and click the New Identity Pool button
2. Give your ldentity Pool a unique name and enable access to unauthenticated identities

3. Click the Create Pool button and then the Update Roles to create your identity pool and associated
roles

For more information on Amazon Cognito Identity, see Amazon Cognito Setup for iOS.

Note
The auto-generated Roles include the permissions needed to access Amazon Cognito Sync, so no
further configuration is required.

The next page displays code that creates a credential provider that provides a Amazon Cognito Identity
for your app to use. Copy the code from Steps 1 & 2 into your AppDelegate.m file as shown below:

Add the following import statements:

Swift

import AWSCore

292

http://docs.aws.amazon.com/cognito/devguide/sync/
https://aws.amazon.com/appsync/
http://docs.aws.amazon.com/appsync/latest/devguide/building-a-client-app-ios.html
https://console.aws.amazon.com/cognito/

AWS Mobile Developer Guide
Data Sync (AWS Cognito Sync)

import AWSCognito

Objective-C

#import <AWSCore/AWSCore.h>
#import <AWSCognito/AWSCognito.h>

If you have an existing AWS credential provider, add the following code to
application:didFinishLaunchingWithOptions method:

Swift

let credentialProvider = AWSCognitoCredentialsProvider(regionType: .USEastl,
identityPoolId: "YourIdentityPoolId")

let configuration = AWSServiceConfiguration(region: .USEastl, credentialsProvider:
credentialProvider)

AWSServiceManager.default().defaultServiceConfiguration = configuration

Objective-C

AWSCognitoCredentialsProvider *credentialsProvider = [[AWSCognitoCredentialsProvider
alloc] initWithRegionType:AWSRegionUSEastl
identityPoolId:@"<your-identity-pool-arn>"1];

AWSServiceConfiguration *configuration = [[AWSServiceConfiguration alloc]
initWithRegion:AWSRegionUSEastl credentialsProvider:credentialsProvider];

AWSServiceManager.defaultServiceManager.defaultServiceConfiguration = configuration;

For more information on Amazon Cognito Identity, sese Amazon Cognito Setup for iOS

Syncing User Data
To sync unauthenticated user data:

1. Create a dataset and add user data.
2. Synchronize the dataset with the cloud.

Create a Dataset and Add User Data

Create an instance of AWSCognitoDataset. User data is added in the form of key/value pairs. Dataset
objects are created with the AwsCognito class which functions as a Amazon Cognito client object. Use
the defaultCognito method to get a reference to the default singleton instance of AWSCognito. The
openOrCreateDataset method is used to create a new dataset or open an existing instance of a dataset
stored locally on the device:

Swift

let dataset = AWSCognito.default().openOrCreateDataset("user_data")

Objective-C

AWSCognitoDataset *dataset = [[AWSCognito defaultCognito]
openOrCreateDataset:datasetName]; :@"user_data"];

293

AWS Mobile Developer Guide
Machine Learning (Amazon Machine Learning)

User data is added to an AWSCognitoDataset instance using the setString:forKey or setValue:forKey
methods. The following code snippet shows how to add some user data to a dataset:

Swift

dataset?.setString("John Doe", forKey:"Username")
dataset?.setString("10000", forKey:"HighScore")

Objective-C

[dataset setString:@"John Doe" forKey:@"Username"];
[dataset setString:@"10000" forKey:@"HighScore"];

Synchronize Dataset with the Cloud
To sync the dataset with the cloud, call the synchronize method on the dataset object:

Swift

_ = dataset?.synchronize()

Objective-C

[dataset synchronize];

All data written to datasets will be stored locally until the dataset is synced. The code in this section
assumes you are using an unauthenticated Amazon Cognito identity, so when the user data is synced
with the cloud it will be stored per device. The device has a device ID associated with it, when the user
data is synced to the cloud, it will be associated with that device ID.

To sync user data across devices (based on an authenticated Cognito Identity) see Amazon Cognito Sync
Developer Guide.

How To Add Machine Learning with Amazon Machine
Learning

This section provides information on the steps for achieving specific tasks for integrating your Amazon
Machine Learning into your Android and iOS apps.

Topics
» Android: Amazon Machine Learning (p. 294)
» i0S: Amazon Machine Learning (p. 297)

Android: Amazon Machine Learning

Amazon Machine Learning (ML) is a service that makes it easy for developers of all skill levels to use
machine learning technology. The SDK for Android provides a simple, high-level client designed to help
you interface with Amazon Machine Learning service. The client enables you to call Amazon ML's real-
time API to retrieve predictions from your models and enables you to build mobile applications that
request and take actions on predictions. The client also enables you to retrieve the real-time prediction
endpoint URLs for your ML models.

294

http://docs.aws.amazon.com/cognito/devguide/sync/
http://docs.aws.amazon.com/cognito/devguide/sync/

AWS Mobile Developer Guide
Machine Learning (Amazon Machine Learning)

Setup
Prerequisites

You must complete all of the instructions on the Set Up the SDK for Android page before beginning this
tutorial.

Granting Access to Amazon Machine Learning Resources

To use Amazon Machine Learning in an application, you must set the proper permissions. The following
IAM policy allows the user to perform the actions shown in this tutorial on two actions identified by ARN

"Statement": [{
"Effect": "Allow",
"Action": [
"machinelearning:GetMLModel",
"machinelearning:Predict"
]l
"Resource": "arn:aws:machinelearning:use-east-1:11122233444:mlmodel/example-model-id"
]
¥

This policy should be applied to roles assigned to the Amazon Cognito identity pool, but you will need
to replace the Resource value with the correct account ID and ML Model ID. You can apply policies at the
IAM console. To learn more about IAM policies, see Introduction to IAM.

Add Import Statements

Add the following imports to the main activity of your app:

import com.amazonaws.services.machinelearning.*;

Initialize AmazonMachineLearningClient

Pass your initialized Amazon Cognito credentials provider to the AmazonMachineLearningClient
constructor:

Android - Java

AmazonMachineLearningClient client = new
AmazonMachineLearningClient(credentialsProvider);

Android - Kotlin

val client = AmazonMachineLearningClient(credentialsProvider)

Create an Amazon Machine Learning Client
Making a Predict Request

Prior to calling Predict, make sure you have not only a completed ML Model ID but also a created real-
time endpoint for that ML Model ID. This cannot be done through the mobile SDK; you will have to use
the Machine Learning Console or an alternate SDK. To validate that this ML can be used for real-time
Predictions:

295

http://docs.aws.amazon.com/mobile/sdkforandroid/developerguide/setup.html
https://console.aws.amazon.com/iam/home
http://docs.aws.amazon.com/IAM/latest/UserGuide/IAM_Introduction.html
http://docs.aws.amazon.com/AWSSdkDocsJava/latest/DeveloperGuide/welcome.html

AWS Mobile Developer Guide
Machine Learning (Amazon Machine Learning)

Android - Java

// Use a created model that has a created real-time endpoint
String mlModelId = "example-model-id";

// Call GetMLModel to get the realtime endpoint URL

GetMLModelRequest getMLModelRequest = new GetMLModelRequest();
getMLModelRequest.setMLModelId(mlModellId);

GetMLModelResult mlModelResult = client.getMLModel(getMLModelRequest);

// Validate that the ML model is completed
if (!mlModelResult.getStatus().equals(EntityStatus.COMPLETED.toString())) {

}

System.out.println("ML Model is not completed: " +
mlModelResult.getStatus()");
return;
}
// Validate that the realtime endpoint is ready
if (!
mlModelResult.getEndpointInfo().getEndpointStatus().equals(RealtimeEndpointStatus.READY.
{
System.out.println("Realtime endpoint is not ready: " +
mlModelResult.getEndpointInfo().getEndpointStatus());
return;

toString())

Android - Kotlin

// Call GetMLModel to get the realtime endpoint URL
val modelRequest = new GetMLModelRequest()
modelRequest.mLModelID = "example-model-id"

val modelResult = client.getMLModel(modelRequest);

// Validate that the ML model is completed

if (modelResult.status != EntityStatus.COMPLETED.toString()) {
Log.d(TAG, "ML Model is not completed: ${modelResult.status}");
return;

}

// Validate that the realtime endpoint is ready

{

Log.d(TAG, "Realtime endpoint is not ready:
${modelResult.endpointInfo.endpointStatus}");
return;

if (modelResult.endpointInfo.endpointStatus != RealtimeEndpointStatus.READY.toString())

Once the real-time endpoint is ready, we can begin calling Predict. Note that you must pass the real-time

endpoint through the PredictRequest.

Android - Java

// Create a Predict request with your ML model ID and the appropriate Record mapping
PredictRequest predictRequest predictRequest = new PredictRequest();
predictRequest.setMLModelId(mlModelId);

HashMap<String, String> record = new HashMap<String, String>();
record.put("example attribute", "example value");

predictRequest.setRecord(record);
predictRequest.setPredictEndpoint(mlModelResult.getEndpointInfo().getEndpointUrl());

296

AWS Mobile Developer Guide
Machine Learning (Amazon Machine Learning)

// Call Predict and print out your prediction
PredictResult predictResult = client.predict(predictRequest);
Log.d(LOG_TAG. predictResult.getPrediction());

// Do something with the prediction
/] ...

Android - Kotlin

// Create a Predict request with your ML model ID and the appropriate Record mapping
val predictRequest predictRequest = PredictRequest().apply {

mLModelID = "example-model-id"

record = mapOf("example attribute" to "example value")

predictEndpoint = modelResult.endpointInfo.getEndpointUrl

}

val predictResult = client.predict(predictRequest)
Log.d(LOG_TAG, predictResult.prediction)

// Do something with the prediction
/] ...

Additional Resources

« Developer Guide

« Service API Reference

iOS: Amazon Machine Learning

Amazon Machine Learning (ML) is a service that makes it easy for developers of all skill levels to use
machine learning technology. The SDK for iOS provides a simple, high-level client designed to help you
interface with Amazon Machine Learning service. The client enables you to call Amazon ML's real-time
API to retrieve predictions from your models and enables you to build mobile applications that request
and take actions on predictions. The client also enables you to retrieve the real-time prediction endpoint
URLs for your ML models.

Integrate Amazon Machine Learning

To use the Amazon Machine Learning mobile client, you'll need to integrate the SDK for iOS into your
app and import the necessary libraries. To do so, follow these steps:

#. Download the SDK and unzip it as described in Setup the SDK for iOS #. The instructions direct you
to import the headers for the services you'll be using. For Amazon Machine Learning, you need the
following import.

iOS - Swift

import AWSMachineLearning

iOS - Objective C

#import <AWSMachineLearning/AWSMachineLearning.h>

297

http://docs.aws.amazon.com/machine-learning/latest/dg
http://docs.aws.amazon.com/machine-learning/latest/APIReference
http://docs.aws.amazon.com/mobile/sdkforios/developerguide/setup-aws-sdk-for-ios.html

AWS Mobile Developer Guide
Machine Learning (Amazon Machine Learning)

Configure Credentials

You can use Amazon Cognito to provide temporary AWS credentials to your application. These
credentials let the app access your AWS resources. To create a credentials provider, follow the
instructions at Providing AWS Credentials.

To use Amazon Machine Learning in an application, you must set the proper permissions. The following
IAM policy allows the user to perform the actions shown in this tutorial on two actions identified by ARN.

"Statement": [{
"Effect": "Allow",
"Action": [
"machinelearning:GetMLModel",
"machinelearning:Predict"
]l
"Resource": "arn:aws:machinelearning:use-east-1:11122233444:mlmodel/example-model-id"

3]

This policy should be applied to roles assigned to the Amazon Cognito identity pool, but you will need
to replace the Resource value with the correct account ID and ML Model ID. You can apply policies at the
IAM console. To learn more about IAM policies, see Introduction to IAM.

Create an Amazon Machine Learning Client

Once you've imported the necessary libraries and have your credentials object, you can instantiate
AWSMachineLearningGetMLModellnput.

iOS - Swift

let getMlModelInput = AWSMachineLearningGetMLModelInput()

Objective C

AWSMachineLearningGetMLModelInput *getMLModelInput = [AWSMachineLearningGetMLModelInput
new];

Making a Predict Request

Prior to calling Predict, make sure you have not only a completed ML Model ID but also a created real-
time endpoint for that ML Model ID. This cannot be done through the mobile SDK; you will have to use
the Machine Learning Console or an alternate SDK. To validate that this ML can be used for real-time
Predictions.

iOS - Swift

// Use a created model that has a created real-time endpoint
let mlModelId = "example-model-id";

// Call GetMLModel to get the realtime endpoint URL

let getMlModelInput = AWSMachineLearningGetMLModelInput()
getMlModelInput!.mlModelId = mlModelld;

machineLearning.getMLModel(getM1lModelInput!).continueOnSuccessWith { (task) -> Any? in
if let getMLModelOutput = task.result {

if (getMLModelOutput.status != AWSMachineLearningEntityStatus.completed) {

298

http://docs.aws.amazon.com/mobile/sdkforios/developerguide/cognito-auth-aws-identity-for-ios.html#providing-aws-credsentials
https://console.aws.amazon.com/iam/home
http://docs.aws.amazon.com/IAM/latest/UserGuide/IAM_Introduction.html
https://console.aws.amazon.com/machinelearning
http://docs.aws.amazon.com/AWSSdkDocsJava/latest/DeveloperGuide/welcome.html

AWS Mobile Developer Guide
Machine Learning (Amazon Machine Learning)

print ("ML Model is not completed");
return nil;

}

// Validate that the realtime endpoint is ready
if (getMLModelOutput.endpointInfo!.endpointStatus !=
AWSMachineLearningRealtimeEndpointStatus.ready) {
print("Realtime endpoint is not ready");
return nil;

}
}
return nil
}
Objective C

// Use a created model that has a created real-time endpoint
NSString *MLModelId = @"example-model-id";

// Call GetMLModel to get the realtime endpoint URL

AWSMachineLearningGetMLModelInput *getMLModelInput = [AWSMachineLearningGetMLModelInput
new];

getMLModelInput.MLModelId = MLModellId;

[[[MachineLearning getMLModel:getMLModelInput] continueWithSuccessBlock:*id(AWSTask

*task) {
AWSMachineLearningGetMLModelOutput *getMLModelOutput = task.result;

// Validate that the ML model is completed

if (getMLModelOutput.status != AWSMachineLearningEntityStatusCompleted) {
NSLog(@"ML Model is not completed");
return nil;

}

// Validate that the realtime endpoint is ready
if (getMLModelOutput.endpointInfo.endpointStatus !=
AWSMachineLearningRealtimeEndpointStatusReady) {
NSLog(@"Realtime endpoint is not ready");
return nil;

Once the real-time endpoint is ready, we can begin calling Predict. Note that you must pass the real-time
endpoint through the PredictRequest.

iOS - Swift

// Create a Predict request with your ML Model id and the appropriate

let predictInput = AWSMachineLearningPredictInput()
predictInput!.predictEndpoint = getMLModelOutput.endpointInfo!.endpointUrl;
predictInput!.mlModelId = mlModelld;

predictInput!.record = record

return machineLearning.predict(predictInput!)

Objective C

// Create a Predict request with your ML Model id and the appropriate Record mapping.
AWSMachineLearningPredictInput *predictInput = [AWSMachineLearningPredictInput new];
predictInput.predictEndpoint = getMLModelOutput.endpointInfo.endpointUrl;

299

AWS Mobile Developer Guide
Miscellaneous

predictInput.MLModelId = MLModelId;
predictInput.record = @{};

// Call and return prediction
return [MachineLearning predict:predictInput];

Additional Resources

» Developer Guide
« API Reference

How To For Platform Specific Tasks

This section provides information on the steps for achieving specific tasks for integrating AWS Services
into iOS apps.

Topics
« i0S: Working with Asynchronous Tasks (p. 300)
« i0S: Preparing Your App to Work with ATS (p. 307)

iOS: Working with Asynchronous Tasks

To work with asynchronous operations without blocking the Ul thread, the SDK provides two options:

« completionHandler, a streamlined class which offers a simple, common pattern for most API calls

and

« AWSTask, a class which is a renamed version of BFTask from the Bolts framework. AWSTasks gives
advantages for more complex operations like chaining asynchronous requests.

For complete documentation on Bolts, see the Bolts-ObjC repo.

Using completionHandler

Most simple asynchronous API method calls can use completionHandler to handle method callbacks.
When an asynchronous method is complete, completionHandler returns two parts: a response object
containing the method's return if the call was successful, or nil if failed; and an error object containing
the NSError state when a call fails, or nil upon success.

Handling Asynchronous Method Returns with completionHandler

The following code shows typical usage of completionHandler using Amazon Kinesis Firehose as the
example.

iOS - Swift

var firehose = AWSFirehose.default()
firehose.putRecord(AWSFirehosePutRecordInput(), completionHandler: {(_ response:
AWSFirehosePutRecordOutput?, _ error: Error?) -> Void in
if error != nil {
//handle error

}

300

http://docs.aws.amazon.com/machine-learning/latest/dg
http://docs.aws.amazon.com/machine-learning/latest/APIReference
https://github.com/BoltsFramework/Bolts-ObjC

AWS Mobile Developer Guide
Miscellaneous

i0S

else {
//handle response
}
b
- Objective-C

AWSFirehose *firehose = [AWSFirehose defaultFirehose];

[firehose putRecord:[AWSFirehosePutRecordInput new]
completionHandler: A (AWSFirehosePutRecordOutput* _Nullable response, NSError *
_Nullable error) {

if(error){

//handle error

}else{

//handle response

}

31i

Using AWSTask

An AWSTask object represents the result of an asynchronous method. Using AWSTask, you can wait for
an asynchronous method to return a value, and then do something with that returned value. You can
chain asynchronous requests instead of nesting them. This helps keep logic clean and code readable.

Handling Asynchronous Method Returns with AWSTask

The following code shows how to use continueOnSuccessBlockWith: and continueWith: to
handle methods calls that return an AwSTask object.

i0OS

- Swift

let kinesisRecorder = AWSKinesisRecorder.default()

let testData = "test-data".data(using: .utf8)
kinesisRecorder?.saveRecord(testData, streamName: "test-stream-
name").continueOnSuccessWith(block: { (task:AWSTask<AnyObject>) -> AWSTask<AnyObject>?
in
// Guaranteed to happen after saveRecord has executed and completed successfully.
return kinesisRecorder?.submitAllRecords()
}).continueWith(block: { (task:AWSTask<AnyObject>) -> Any? in
if let error = task.error as? NSError {
print("Error: \(error)")
return nil

i0OS

}

return nil
b
- Objective-C

AWSKinesisRecorder *kinesisRecorder = [AWSKinesisRecorder defaultKinesisRecorder];

NSData *testData = [@"test-data" dataUsingEncoding:NSUTF8StringEncoding];
[[[kinesisRecorder saveRecord:testData
streamName:@"test-stream-name"] continueWithSuccessBlock:*id(AWSTask
*task) {
return [kinesisRecorder submitAllRecords];
}] continueWithBlock:2id(AWSTask *task) {

301

AWS Mobile Developer Guide
Miscellaneous

if (task.error) {
NSLog(@"Error: %@", task.error);

}

return nil;

1

The submitAllRecords call is made within the continueOnSuccessWith /
continueWithSuccessBlock: because we want to run submitAllRecords after
saveRecord:streamName: successfully finishes running. The continuewith and
continueOnSuccessWith won't run until the previous asynchronous call finishes. In this example,
submitAllRecords is guaranteed to see the result of saveRecord:streamName:.

Handling Errors with AWSTask

The continueWith: and continueOnSuccessWith: block calls work in similar ways. Both ensure
that the previous asynchronous method finishes executing before the subsequent block runs. However,
they have one important difference: continueOnSuccessWith: is skipped if an error occurred in the
previous operation, but continueWith: is always executed.

For example, consider the following scenarios, which refer to the preceding code snippet above.
» saveRecord:streamName: succeeded and submitAllRecords succeeded.

In this scenario, the program flow proceeds as follows:

1. saveRecord: streamName: is successfully executed.
2. continueOnSuccessWith: is executed.

3. submitAllRecords is successfully executed.

4. continueWith: is executed.

5. Because task.error is nil, it doesn't log an error.

6. Done.

e saveRecord:streamName: succeeded and submitAllRecords failed.

In this scenario, the program flow proceeds as follows:

1. saveRecord: streamName: is successfully executed.

2. continueOnSuccessWith is executed.

3. submitAllRecords is executed with an error.

4. continueWithBlock: is executed.

5. Because task.error is NOT nil, it logs an error from submitAllRecords.
6. Done.

e saveRecord:streamName: failed.

In this scenario, the program flow proceeds as follows:

1. saveRecord:streamName: is executed with an error.

. continueOnSuccessWith: is skipped and will NOT be executed.
. continueWithBlock: is executed.

. Because task.error is NOT nil, it logs an error from saveRecord:streamName:.

u b N

. Done.

Consolidated Error Logic with AWSTask

The preceding example consolidates error handling logic at the end of the execution chain for both
methods called. It doesn't check for task.error in continueOnSuccessBlockWith:, but waits

302

AWS Mobile Developer Guide
Miscellaneous

until the continuewWith: block executes to do so. An error from either the submitAl1Records or the
saveRecord:streamName: method will be printed.

Per Method Error Logic with AWSTask

The following code shows how to implement the same behavior, but makes error handling specific to
each method. submitAllRecords is only called if saveRecord: streamName succeeds, however,

in this case, the saveRecord: streamName call uses continueWith:, the block logic checks
task.error and returns nil upon error. If that block succeeds then submitAllRecords is called using
continueWith: in a block that also checks task.error for its own context.

iOS - Swift

let kinesisRecorder = AWSKinesisRecorder.default()

let testData = "test-data".data(using: .utf8)
kinesisRecorder?.saveRecord(testData, streamName: "test-stream-
name").continueWith(block: { (task:AWSTask<AnyObject>) -> AWSTask<AnyObject>? in
if let error = task.error as? NSError {
print("Error from 'saveRecord:streamName:': \(error)")
return nil
}
return kinesisRecorder?.submitAllRecords()
}).continueWith(block: { (task:AWSTask<AnyObject>) -> Any? in
if let error = task.error as? NSError {
print("Error from 'submitAllRecords': \(error)")
return nil

}

return nil

»

iOS - Objective-C

AWSKinesisRecorder *kinesisRecorder = [AWSKinesisRecorder defaultKinesisRecorder];

NSData *testData = [@"test-data" dataUsingEncoding:NSUTF8StringEncoding];
[[[kinesisRecorder saveRecord:testData
streamName:@"test-stream-name"] continueWithBlock:*id(AWSTask *task) {
if (task.error) {
NSLog(@"Error from 'saveRecord:streamName:': %@", task.error);
return nil;
¥
return [kinesisRecorder submitAllRecords];
}]lcontinueWithBlock:2id(AWSTask *task) {
if (task.error) {
NSLog(@"Error from 'submitAllRecords': %@", task.error);
¥

return nil;

1

Returning AWSTask or nil

Remember to return either an AWSTask object or nil in every usage of continuewWith: and
continueOnSuccessWith:. In most cases, Xcode provides a warning if there is no valid return present,
but in some cases an undefined error can occur.

Executing Multiple Tasks with AWSTask

If you want to execute a large number of operations, you have two options: executing in sequence or
executing in parallel.

303

AWS Mobile Developer Guide
Miscellaneous

In Sequence

You can submit 100 records to an Amazon Kinesis stream in sequence as follows:

i0S

i0S

- Swift

var task = AWSTask<AnyObject>(result: nil)

for i in 0...100 {
task = task.continueOnSuccessWith(block: { (task:AWSTask<AnyObject>) ->
AWSTask<AnyObject>? in
return kinesisRecorder!.saveRecord(String(format: "TestString-%024",
i).data(using: .utf8), streamName: "YourStreamName")
»
¥

task.continueOnSuccessWith { (task:AWSTask<AnyObject>) -> AWSTask<AnyObject>? in
return kinesisRecorder?.submitAllRecords()

}

- Objective-C

AWSKinesisRecorder *kinesisRecorder = [AWSKinesisRecorder defaultKinesisRecorder];

AWSTask *task = [AWSTask taskWithResult:nil];
for (int32_t i = 0; i < 100; i++) {
task = [task continueWithSuccessBlock:2id(AWSTask *task) {
NSData *testData = [[NSString stringWithFormat:e@"TestString-%02d", i]
dataUsingEncoding:NSUTF8StringEncoding];
return [kinesisRecorder saveRecord:testData
streamName:@"test-stream-name"];
1
}

[task continueWithSuccessBlock:*id(AWSTask *task) {
return [kinesisRecorder submitAllRecords];

1

In this case, the key is to concatenate a series of tasks by reassigning task.

i0OS

- Swift

task.continueOnSuccessWith { (task:AWSTask<AnyObject>) -> AWSTask<AnyObject>? in

i0S

- Objective-C

task = [task continueWithSuccessBlock:Aid(AWSTask *task) {

In Parallel

You can execute multiple methods in parallel by using taskForCompletionOfAllTasks: as follows.

i0S

- Swift

var tasks = Array<AWSTask<AnyObject>>()
for i in 0...100 {
tasks.append(kinesisRecorder!.saveRecord(String(format: "TestString-%024",
i).data(using: .utf8), streamName: "YourStreamName")!)

304

AWS Mobile Developer Guide
Miscellaneous

}

AWSTask(forCompletionOfAllTasks: tasks).continueOnSuccessWith(block:
{ (task:AWSTask<AnyObject>) -> AWSTask<AnyObject>? in
return kinesisRecorder?.submitAllRecords()
}).continueWith(block: { (task:AWSTask<AnyObject>) -> Any? in
if let error = task.error as? NSError {
print("Error: \(error)")
return nil

}

return nil

»

iOS - Objective-C

AWSKinesisRecorder *kinesisRecorder = [AWSKinesisRecorder defaultKinesisRecorder];

NSMutableArray *tasks = [NSMutableArray new];
for (int32_t i = 0; i < 100; i++) {
NSData *testData = [[NSString stringWithFormat:@"TestString-%02d", i]
dataUsingEncoding:NSUTF8StringEncoding];
[tasks addObject:[kinesisRecorder saveRecord:testData
streamName:@"test-stream-name"]];

}

[[AWSTask taskForCompletionOfAllTasks:tasks] continueWithSuccessBlock:*id(AWSTask
*task) {
return [kinesisRecorder submitAllRecords];

1

In this example you create an instance of NSMutableArray, put all of our tasks in it, and then pass it

to taskForCompletionOfAllTasks:, which is successful only when all of the tasks are successfully
executed. This approach may be faster, but it may consume more system resources. Also, some AWS
services, such as Amazon DynamoDB, throttle a large number of certain requests. Choose a sequential or
parallel approach based on your use case.

Executing a Block on the Main Thread with AWSTask

By default, continueWwithBlock: and continueWithSuccessBlock: are executed on a background
thread. But in some cases (for example, updating a Ul component based on the result of a service call),
you need to execute an operation on the main thread. To execute an operation on the main thread, you
can use Grand Central Dispatch or AWSExecutor.

Grand Central Dispatch
The following example shows the use of dispatch_async(dispatch_get_main_queue(),
A{...}); to execute a block on the main thread. For error handling, it creates a UIAlertView on the

main thread when record submission fails.

iOS - Swift

let kinesisRecorder = AWSKinesisRecorder.default()

let testData = "test-data".data(using: .utf8)
kinesisRecorder?.saveRecord(testData, streamName: "test-stream-
name").continueOnSuccessWith(block: { (task:AWSTask<AnyObject>) -> AWSTask<AnyObject>?
in
return kinesisRecorder?.submitAllRecords()
}).continueWith(block: { (task:AWSTask<AnyObject>) -> Any? in

305

AWS Mobile Developer Guide
Miscellaneous

if let error task.error as? NSError {

alertController.show()

»

return nil

}

return nil

»

DispatchQueue.main.async(execute: {
let alertController = UIAlertView(title: "Error!", message:
error.description, delegate: nil, cancelButtonTitle: "OK")

iOS - Objective-C

*kinesisRecorder

AWSKinesisRecorder

NSData *testData
[[[kinesisRecorder

[@e"test-data" dataUsingEncoding
saveRecord:testData
streamName:@"test-stream-name"]

*task) {
return [kinesisRecorder submitAllRecords];
}] continueWithBlock:2id(AWSTask *task) {
if (task.error) {
dispatch_async(dispatch_get_main_ queue(),
UIAlertView *alertView
[[UIAlertView alloc] initWithTitle

[AWSKinesisRecorder defaultKinesisRecorder];

:NSUTF8StringEncoding];

continueWithSuccessBlock:*id(AWSTask

~

t@"Error!"

message:[NSString stringWithFormat:@"Error:
%@", task.error]
delegate:nil
cancelButtonTitle:@"OK"
otherButtonTitles:nil];
[alertView show];
)i
}
return nil;
1
AWSExecutor

Another option is to use AWSExecutor as follows.

iOS - Swift

let kinesisRecorder AWSKinesisRecorder.default()

.utf8)
streamName:

let testData = "test-data".data(using:
kinesisRecorder?.saveRecord(testData,

in
return kinesisRecorder?.submitAllRecords()

-> Any? in
if let error
let alertController
delegate: nil, cancelButtonTitle:
alertController.show()
return nil

task.error as? NSError {
UIAlertvView(title:
VloKll)

}

return nil

»

"test-stream-

name").continueOnSuccessWith(block: { (task:AWSTask<AnyObject>) -> AWSTask<AnyObject>?
}).continueWith(executor: AWSExecutor.mainThread(), block: { (task:AWSTask<AnyObject>)

"Error!", message: error.description,

306

AWS Mobile Developer Guide
Miscellaneous

iOS - Objective-C

AWSKinesisRecorder *kinesisRecorder = [AWSKinesisRecorder defaultKinesisRecorder];

NSData *testData = [@"test-data" dataUsingEncoding:NSUTF8StringEncoding];
[[[kinesisRecorder saveRecord:testData streamName:@"test-stream-name"]
continueWithSuccessBlock:*id(AWSTask *task) {
return [kinesisRecorder submitAllRecords];
}] continueWithExecutor:[AWSExecutor mainThreadExecutor] withBlock:2id(AWSTask *task) {
if (task.error) {
UIAlertView *alertView =
[[UIAlertView alloc] initWithTitle:@"Error!"
message:[NSString stringWithFormat:@"Error: %@", task.error]
delegate:nil
cancelButtonTitle:@"OK"
otherButtonTitles:nil];
[alertView show];
}
return nil;

1

In this case, withBlock: (Objective-C) or block: (Swift) is executed on the main thread.

iOS: Preparing Your App to Work with ATS

If you use the iOS 9 SDK (or Xcode 7) or later, the Apple App Transport Security (ATS) feature might
impact how your apps interact with some AWS services.

If your app targeted for iOS 9+ attempts to connect to an AWS service endpoint that does not yet
meet all the ATS requirements, the connection may fail. The following sections provide instructions to
determine if your app is affected, and what steps to take to mitigate the impact of ATS on your app.

Diagnosing ATS Conflicts

If your app stops working after being upgraded to Xcode 7 or later and iOS 9 or later, follow these steps
to determine if it affected by ATS.

1. Turn on verbose logging of the AWS Mobile SDK for iOS by calling the following line in the -
application:didFinishLaunchingWithOptions: application delegate.

iOS - Swift

@UIApplicationMain
class AppDelegate: UIResponder, UIApplicationDelegate {

var window: UIWindow?
func application(application: UIApplication, didFinishLaunchingWithOptions
launchOptions: [UIApplicationLaunchOptionsKey: Any]?) -> Bool {

AWSLogger.default().logLevel = .verbose

return true

iOS - Objective-C

#import <AWSCore/AWSCore.h>

307

https://developer.apple.com/library/prerelease/ios/technotes/App-Transport-Security-Technote/

AWS Mobile Developer Guide
Miscellaneous

@implementation AppDelegate

- (BOOL)application:(UIApplication *)application
didFinishLaunchingWithOptions: (NSDictionary *)launchOptions {

[AWSLogger defaultLogger].logLevel = AWSLogLevelVerbose;

return YES;

}

@end

2. Run your app and make a request to an AWS service.

3. Search your log output for "SSL". The message containing: "An SSL error has occurred and a secure
connection to the server cannot be made" indicates that your app is affected by the ATS changes.

2015-10-06 11:39:13.402 DynamoDBSampleSwift[14467:303540] CFNetwork SSLHandshake failed
(-9824)

2015-10-06 11:39:13.403 DynamoDBSampleSwift[14467:303540] NSURLSession/NSURLConnection
HTTP load failed (kCFStreamErrorDomainSSL, -9824)

2015-10-06 11:39:13.569 DynamoDBSampleSwift[14467:303540] CFNetwork SSLHandshake failed
(-9824)

2015-10-06 11:39:13.569 DynamoDBSampleSwift[14467:303540] NSURLSession/NSURLConnection
HTTP load failed (kCFStreamErrorDomainSSL, -9824)

Error: Error Domain=NSURLErrorDomain Code=-1200 "An SSL error has occurred and a secure
connection to the server cannot be made." UserInfo={_kCFStreamErrorCodeKey=-9824,
NSLocalizedRecoverySuggestion=Would you like to connect to the server anyway?,
NSUnderlyingError=0x7fca343012f0 {Error Domain=kCFErrorDomainCFNetwork
Code=-1200 "(null)" UserInfo={_kCFStreamPropertySSLClientCertificateState=0,
_kCFNetworkCFStreamSSLErrorOriginalvalue=-9824, _kCFStreamErrorDomainKey=3,
_kCFStreamErrorCodeKey=-9824}}, NSLocalizedDescription=An SSL error has occurred
and a secure connection to the server cannot be made., NSErrorFailingURLKey=https://

dynamodb.us-east-1.amazonaws.com/, NSErrorFailingURLStringKey=https://dynamodb.us-

east-1l.amazonaws.com/, _kCFStreamErrorDomainKey=3}

If you cannot find the SSL handshake error message, it is possible that another problem caused your
app to stop working. Some internal behaviors change with major operating system updates, and it is
common for previously unseen issues to surface.

If you are unable to resolve such issues, you can post code snippets, and steps to reproduce the issue
on our forum or GitHub so that we can assist you in identifying the issue. Remember to include the
versions of Xcode, iOS, and the AWS Mobile SDK.

Mitigating ATS Connection Issues
If you determine that your app is impacted by the diagnostic handshake error, you can configure the

app to interact properly with the ATS feature by taking the following steps to add properties to your
Info.plist file.

1. Locate your Info.plist and from the context menu select Open As > Source Code.

308

https://forums.aws.amazon.com/forum.jspa?forumID=88
https://github.com/aws/aws-sdk-ios/issues

AWS Mobile Developer Guide
Miscellaneous

String 1

9 Images.xcassets Bundle version .
LaunchScreen.xib Application requires iPhone envir... % B::?lean YES
v Supporting Files Launch screen Inlerface file base... &+ String Lau
- | bnin etardnnard fila haecs ngma 4 String Mai
B Infoplist | Show in Finder ; & Array i it
h DynamoDE Open with External Editor iinns 4 Arrav (3t
¥ [Products Open As [S Property List
#% DynamoDBSt¢ Show File Inspector Source Code
[Pods .
> Frameworks New FI"E'“ - HE}‘{
» B Pods Add Files to “DynamoDBSampleSwift”... _ Quick Look
Delete
New Group

New Group from Selection

Source Control 3

Project Mavigator Help 3

2. Copy and paste the following key as a direct child of the top level <dict> tag.

<plist version="1.0">
<key>NSAppTransportSecurity</key>
<dict>
<key>NSExceptionDomains</key>
<dict>
<key>amazonaws.com</key>
<dict>
<key>NSThirdPartyExceptionMinimumTLSVersion</key>
<string>TLSv1.0</string>
<key>NSThirdPartyExceptionRequiresForwardSecrecy</key>
<false/>
<key>NSIncludesSubdomains</key>
<true/>
</dict>
<key>amazonaws.com.cn</key>
<dict>
<key>NSThirdPartyExceptionMinimumTLSVersion</key>
<string>TLSv1.0</string>
<key>NSThirdPartyExceptionRequiresForwardSecrecy</key>
<false/>
<key>NSIncludesSubdomains</key>
<true/>
</dict>
</dict>
</dict>
</plist>

309

AWS Mobile Developer Guide
Reference

After following these steps, your app should be able to access AWS endpoints while running on iOS 9 or
later.

AWS Mobile Reference

Topics
« Android and iOS API References (p. 310)
« Amazon S3 Security Considerations for Mobile Hub Users (p. 310)
« Amazon CloudFront Security Considerations for Mobile Hub Users (p. 311)
« AWS Mobile Reference (p. 312)

Android and iOS API References

Android

« AWS Mobile SDK for Android API Reference

» Latest AWS Mobile SDK for Android Download
o AWS Mobile SDK for Android on GitHub

« AWS Mobile SDK for Android Samples

ioS

« AWS Mobile SDK for iOS API Reference
o AWS Mobile SDK for iOS on GitHub
« AWS Mobile SDK for iOS Samples

Amazon S3 Security Considerations for Mobile Hub
Users

When you enable the Mobile Hub User File Storage or Hosting and Streaming features, it creates an
Amazon S3 bucket in your account. This topic describes the key Amazon S3 security-related features that
you might want to use for this bucket. Hosting and Streaming also configures a CloudFront distribution
that caches the assets stored in the bucket it creates. For the same type of information regarding the
distribution, see cloudfront-security.

Access management

By default, access to Amazon S3 buckets and related objects are private: only the resource owner can
access a bucket or assets contained in it. The administrator of a bucket can grant access that suits their
design by attaching resource-based policies, such as bucket policy or access control lists (ACLs) to grant
access to users or groups of users.

The Amazon S3 configuration provisioned by the AWS Mobile Hub Hosting and Streaming (p. 342)
feature is example of setting bucket policy to a allow access to all users. This access policy makes sense
in the context of publicly hosting a web app through this feature. We recommend, if it meets app design
criteria, that developers also add the User Sign-in (p. 348) feature so that only authenticated users

have access to an app's AWS resources like buckets and database.

310

http://docs.aws.amazon.com/AWSAndroidSDK/latest/javadoc/
http://sdk-for-android.amazonwebservices.com/latest/aws-android-sdk.zip
https://github.com/aws/aws-sdk-android
https://github.com/awslabs/aws-sdk-android-samples
http://docs.aws.amazon.com/AWSiOSSDK/latest/
https://github.com/aws/aws-sdk-ios
https://github.com/awslabs/aws-sdk-ios-samples

AWS Mobile Developer Guide
Amazon CloudFront Security Considerations

For more information, see Managing Access Permissions to Your Amazon S3 Resources in the Amazon S3
Developer Guide.

Obiject Lifecycle Management

You can use object lifecycle management to have Amazon S3 take actions on files (also referred to in
Amazon S3 as objects) in a bucket based on specific criteria. For example, after a specific amount of
time since a mobile app user uploaded a file to the bucket, you might want to permanently delete that
file or move it to Amazon Glacier. You might want to do this to reduce the amount of data in files that
other mobile app users can potentially access. You might also want to manage your costs by deleting or
archiving files that you know you or mobile app users no longer need.

For more information, see Object Lifecycle Management in the Amazon S3 Developer Guide.

Object Encryption

Object encryption helps increase the protection of the data in files while they are traveling to and from
a bucket as well as while they are in a bucket. You can use Amazon S3 to encrypt the files, or you can
encrypt the files yourself. Files can be encrypted with an Amazon S3-managed encryption key, a key
managed by AWS Key Management Service (AWS KMS), or your own key.

For more information, see the Protecting Data Using Encryption section in the Amazon S3 Developer
Guide.

Object Versioning

Object versioning helps you recover data in files more easily after unintended mobile app user actions
and mobile app failures. Versioning enables you to store multiple states of the same file in a bucket. You
can uniquely access each version by its related file name and version ID. To help manage your costs, you
can delete or archive older versions that you no longer need, or you can suspend versioning.

For more information, see the Using Versioning section in the Amazon S3 Developer Guide.

Bucket Logging

Bucket logging helps you learn more about your app users, helps you meet your organization's audit
requirements, and helps you understand your Amazon S3 costs. Each access log record provides details
about a single access request, such as the requester, bucket name, request time, request action, response
status, and error code, if any. You can store logs in the same bucket or in a different one. To help manage
your costs, you can delete logs that you no longer need, or you can suspend logging.

For more information, see Managing Bucket Logging in the Amazon S3 User Guide.

Amazon CloudFront Security Considerations for
Mobile Hub Users

When you enable the AWS Mobile Hub Hosting and Streaming (p. 342) feature, an Amazon CloudFront
distribution is created in your account. The distribution caches the web assets you store within an
associated Amazon S3 bucket throughout a global network of Amazon edge servers. This provides your
customers with fast local access to the web assets.

This topic describes the key CloudFront security-related features that you might want to use for your
distribution. For the same type of information regarding the source bucket, see s3-security.

311

http://docs.aws.amazon.com/AmazonS3/latest/dev/s3-access-control.html
http://docs.aws.amazon.com/AmazonS3/latest/dev/object-lifecycle-mgmt.html
http://docs.aws.amazon.com/AmazonS3/latest/dev/UsingEncryption.html
http://docs.aws.amazon.com/AmazonS3/latest/dev/Versioning.html
http://docs.aws.amazon.com/AmazonS3/latest/user-guide/ManagingBucketLogging.html
http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/

AWS Mobile Developer Guide
AWS Mobile Hub Reference

Access management

Hosting and Streaming makes assets in a distribution publically available. While this is the normal
security policy for Internet based resources, you should consider restricting access to the assets if this
is not the case. The best practice for security is to follow a ?minimal permissions? model and restrict
access to resources as much as possible. You may want to modify resource-based policies, such as the
distribution policy or access control lists (ACLs), to grant access only to some users or groups of users.

To protect access to any AWS resources associated with a Hosting and Streaming web app, such as
buckets and database tables, we recommend restricting access to only authenticated users. You can add
this restriction to your Mobile Hub project by enabling the User Sign-in (p. 348) feature, with the sign-
in required option.

For more information, see Authentication and Access Control for CloudFront in the Amazon CloudFront
Developer Guide.

Requiring the HTTPS Protocol

CloudFront supports use of the HTTPS protocol to encrypt communications to and from a distribution.
This highly recommended practice protects both the user and the service. CloudFront enables you to
require HTTPS both between customers and your distribution endpoints, and CloudFront between your
distribution's caches and the source bucket where your assets originate. Global redirection of HTTP traffic
to HTTPS, use of HTTPS for custom domains and other options are also supported.

For more information, see Using HTTPS with CloudFront in the Amazon CloudFront Developer Guide.

Securing Private Content

CloudFront supports a range of methods for protecting private content in a distribution cache. These
include the use of signed cookies and signed URLSs to restrict access to authenticated, authorized users.

A best practice is to use techniques like these on both the connection between the user and the
distribution endpoint and between the distribution and the content Amazon S3 source bucket.

For more information, see the Serving Private Content through CloudFront section in the Amazon
CloudFront Developer Guide.

Distribution Access Logging

Distribution logging helps you learn more about your app users, helps you meet your organization's audit
requirements, and helps you understand your CloudFront costs. Each access log record provides details
about a single access request, such as the requester, distribution name, request time, request action,
response status, and error code, if any. You can store logs in an Amazon S3 bucket. To help manage your
costs, you can delete logs that you no longer need, or you can suspend logging.

For more information, see Access Logs for CloudFront in the Amazon CloudFront Developer Guide.

AWS Mobile Reference

Topics
« AWS Identity and Access Management Usage in AWS Mobile Hub (p. 313)
« Exporting and Importing AWS Mobile Hub Projects (p. 321)
o AWS Mobile Hub Features (p. 332)
« Mobile Hub Project Service Region Hosting (p. 355)
« Mobile Hub Project Troubleshooting (p. 361)

312

http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/auth-and-access-control.html
http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/using-https.html
http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/PrivateContent.html
http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/AccessLogs.html

AWS Mobile Developer Guide
AWS Mobile Hub Reference

AWS ldentity and Access Management Usage in AWS Mobile
Hub

Note
In depth understanding of AWS IAM, authentication, and access controls are not required to
configure a backend for your mobile app using Mobile Hub.

« Control Access to Mobile Hub Projects (p. 314) - learn how to grant permissions for configuration of
your Mobile Hub project.

« Mobile Hub Project Permissions Model (p. 313) - learn more about permissions you give Mobile Hub
to configure AWS resources and services, see .

« |AM Authentication and Access Control for Mobile Hub (p. 317) - learn details of IAM and AWS
authentication and access controls.

Mobile Hub Project Permissions Model

Important To modify Mobile Hub projects in an account,
a user must be granted administrative
permissions (p. 315) by an account
Administrator. Read this section for more
information.

If you are a user who needs additional permissions
for a project, contact an administrator for the
AWS account. For help with any issues related

to the new permissions model, contact aws-
mobilehub-customer@amazon.com.

Topics
« Mobile Hub Permissions Model (p. 313)
« What if | Currently Use MobileHub_Service_Role to Grant Mobile Hub Permissions? (p. 314)
« Why Did the Permissions Model Change? (p. 314)

Mobile Hub Permissions Model

Currently, Mobile Hub's permissions model uses the user's permissions directly when they perform
operations in the Mobile Hub console or command line interface (p. 386). This model provides account
administrators fine-grained access control over what operations their users can perform in the account,
regardless of whether they are using Mobile Hub or they're using the console or command line interface
to interact with services directly.

In order to modify projects, users are required to have permissions to use Mobile Hub (granted by
AWSMobileHubFullAccess IAM policy), and they must have permission to perform whatever actions
Mobile Hub takes on their behalf. In almost every case, this means an account administrator must grant
the user the AdministratorAccess policy (p. 315) in order to provide access to the AWS resources Mobile
Hub modifies. This is because, as project settings are modified, Mobile Hub will modify the IAM roles and
policies used to enable the features affected by those settings. Changing IAM roles and policies allows
the user to control access to resources in the account, and so they must have administrative permissions.

When an administrator does not want to grant administrative permissions for the full account, they can
choose instead to provide each user or team their own sub-account using AWS Organizations (p. 316).
Within their sub-account, a user will have full administrative permissions. Sub-account owners are only

313

mailto:aws-mobilehub-customer@amazon.com?subject=Mobile%20Hub%20project%20permissions
mailto:aws-mobilehub-customer@amazon.com?subject=Mobile%20Hub%20project%20permissions
https://console.aws.amazon.com/mobilehub/

AWS Mobile Developer Guide
AWS Mobile Hub Reference

limited in what they can do by the policy put in place by their administrator, and billing rolls up to the
parent account.

What if | Currently Use MobileHub_Service_Role to Grant Mobile Hub Permissions?

Previously, Mobile Hub assumed a service role called MobileHub_Service_Role in order to modify
service configurations on your behalf using the following managed policy:

https://console.aws.amazon.com/iam/home?#/policies/arn:aws:iam::aws:policy/service-role/
AWSMobileHub_ServiceUseOnly

In that older model, all that was required to modify Mobile Hub projects was permissions to call Mobile
Hub APIs, through the console or command line. An administrator could delegate those permissions by
attaching the AWSMobileHub_ FullAccess policy to an AWS IAM user, group, or role.

If the account of your Mobile Hub projects relies on the old model, the impact on those who are not
granted AdministratorAccess permissions will be as follows.

« IAM users, groups and roles that have the AWSMobileHub FullAccess policy will no longer have
sufficient permissions to perform any mutating operations in Mobile Hub, either via the console or
awsmobile command line interface (CLI).

« In order for IAM users, groups, or roles to be able to perform mutating operations using Mobile
Hub, they must have the appropriate permissions. The two choices for an administrator to
grant users permission (p. 314) to invoke all available operations in Mobile Hub are: attach the
AdministratorAccess policy to the user, or a role they are attached to, or a group they are a
member of; or alternatively, to use AWS Organizations to manage permissions.

Why Did the Permissions Model Change?

AWS Mobile Hub creates IAM roles and assigns them permissions in order to enable use of AWS resources
in mobile apps. Such operations are considered administrative because they include enabling permission
to perform operations on resources in the account. Previously, Mobile Hub's service role provided users
who have been granted AWSMobileHub_FullAccess permissions with a path to escalate their own
privileges to act on resources, potentially in ways their administrator did not intend to permit. Removing
the service role, removes the path to escalate privileges and puts control of user permissions directly in
the hands of the administrator for a Mobile Hub project.

Control Access to Mobile Hub Projects

Overview

This section describes two different ways to control access to your Mobile Hub projects:

« Grant a user administrative account permissions (p. 315)
For individual developers, or groups whose requirements for segmenting access to their
Mobile Hub projects are simple, permission can be granted by attaching the managed
AdministratorAccess (p. 317) or AWSMobileHub_ReadOnly (p. 317) AWS managed policies to a user,
a role they are attached to, or a group they belong to.

Or:

« Use AWS Organizations to manage permissions (p. 316)
For organizations that require fine-grained access control and cost tracking for their Mobile Hub

projects, AWS account administrators can provide sub-accounts and determine the policies that apply
to their users.

314

https://console.aws.amazon.com/iam/home?#/policies/arn:aws:iam::aws:policy/service-role/AWSMobileHub_ServiceUseOnly
https://console.aws.amazon.com/iam/home?#/policies/arn:aws:iam::aws:policy/service-role/AWSMobileHub_ServiceUseOnly
http://docs.aws.amazon.com/IAM/latest/UserGuide/introduction.html

AWS Mobile Developer Guide
AWS Mobile Hub Reference

To understand how Mobile Hub uses IAM policies attached to a user to create and modify services on a
users behalf, see Mobile Hub Project Permissions Model (p. 313).

To understand AWS ldentity and Access Management (IAM) in more detail, see IAM Authentication
and Access Control for Mobile Hub (p. 317) and IAM Authentication and Access Control for Mobile
Hub (p. 317).

Best Practice: Create IAM Users to Access AWS

To provide better security, we recommend that you do not use your AWS root account to access Mobile
Hub. Instead, create an AWS Identity and Access Management (IAM) user in your AWS account, or use an
existing IAM user, and then access Mobile Hub with that user. For more information, see AWS Security
Credentials in the AWS General Reference.

You can create an IAM user for yourself or a delegate user using the IAM console. First, create an IAM
administrator group, then create and assign a new IAM user to that group.

Note

Before any IAM user within an account can create a mobile Hub project, a user with
administrative privileges for the account must navigate to the Mobile Hub console and create
an initial project. This step provides confirmation that Mobile Hub can manage AWS services on
your behalf.

To learn more about assigning access rights to IAM users or groups, see IAM Authentication and
Access Control for Mobile Hub (p. 317).

Grant Users Permissions to Mobile Hub Projects

Topics
o Create a New IAM User in Your Account and Grant Mobile Hub Permissions (p. 315)
« Create an IAM Group (p. 316)
« Grant Mobile Hub Permissions to an Existing Account User (p. 316)

Use the following steps to create a group and/or users, and grant users access to your Mobile Hub
projects.

To grant permissions to a role, see Adding Permissions in the AWS IAM User Guide.
Create a New IAM User in Your Account and Grant Mobile Hub Permissions

1. Open the IAM console. On the left, choose Users, and then choose Add User.

2. Type a user name, select the checkboxes for Programmatic access and AWS Management Console
access.

3. Choose the password policy you prefer. Then choose Next: Permissions.

4. In the Add user to group tab, select the Administrators or Read_Only group for the user, and choose
Next, Review.

In the process, you will see options to customize the user's password, alert them about their new
account via email, and to download their access key ID, key value and password.

5. Choose Create user.
6. To apply policy:

« If you have created a group to manage project permissions, choose Add user to group, select the
group, choose Next: Review, then choose choose Create User.

Or:

315

http://docs.aws.amazon.com/general/latest/gr/aws-security-credentials.html
http://docs.aws.amazon.com/general/latest/gr/aws-security-credentials.html
https://console.aws.amazon.com/mobilehub/
http://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_change-permissions.html#w2ab1c19c19c26b9
https://console.aws.amazon.com/iam/

AWS Mobile Developer Guide
AWS Mobile Hub Reference

« If you are managing project permissions per user, choose Attach existing policies directly, select
the policy you want to attach, AdministratorAccess or AWSMobileHub_ReadOnly, and then choose
Create user.

Create an IAM Group

1

. Sign in to the AWS Management Console and open the IAM console at http://

console.aws.amazon.com/iam/.

. In the navigation pane, choose Groups, and then choose Create New Group.
. For Group Name, type a name for your group, such as Administrators or Read_Only, and then

choose Next Step.

. In the list of policies, select the check box next to the AdministratorAccess policy to grant full

permissions to the group, or AWSMobileHub_ReadOnly to grant only read access. You can use the
Filter menu and the Search box to filter the list of policies.

. Choose Next Step, and then choose Create Group. Your new group is listed under Group Name.

Grant Mobile Hub Permissions to an Existing Account User

N =

o U1~ W

. On the left, choose Policies.
. Choose the link for the managed policy, AdministratorAccess or AWSMobileHub_ReadOnly you want

to attach.

. Choose Attached Entities.

. Choose Attach.

. Choose the users, roles, or groups you want to grant permissions.
. Choose Attach Policy.

Use AWS Organizations to Manage Permissions

AWS Organizations can be used to manage permissions for groups that need to segment access to their
Mobile Hub projects. For example, an administrator could provide an account for each developer on a
team. Within their own account, each user would have the permissions granted by the administrator. The
steps to acheive this would be:

O Ul NN =

. If you do not have an AWS account, sign up for the AWS Free Tier.
. Create an organization in the AWS Organizations console.

. Create or add existing accounts for each user in the organization.
. Invite the users.

. Create a organizational unit for the developers.

. Enable and attach a policy for members of the unit.

The policy you attach will apply within the scope of the AWS account of a user. You may want to limit
access to services and capabilites not required for Mobile Hub use. For instance, the following policy,
grants all permissions defined in the Ful1AwSAccess managed policy, but excludes access to the
Amazon EC2 service.

"Statement": [

{
"Effect": "Allow",
"ACtiOl’l" R ,
"Resource": "*"

}I

{
"Effect": “Deny”,

316

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
http://docs.aws.amazon.com/organizations/latest/userguide/orgs_introduction.html
https://aws.amazon.com/free/
https://console.aws.amazon.com/organizations/

AWS Mobile Developer Guide
AWS Mobile Hub Reference

"Action": “ec2:*",
"Resource": "*"

For step by step instructions, see the tutorial at Creating and Managing an AWS Organization.
AWS Managed (Predefined) Policies for Mobile Hub Project Access

The AWS Identity and Access Management service controls user permissions for AWS services and
resources. Specific permissions are required in order to view and modify configuration for any project
with AWS Mobile Hub. These permissions have been grouped into the following managed policies, which
you can attach to an IAM user, role, or group.

o AdministratorAccess

This policy provides unlimited access to AWS services in the account. That includes read and write
access to AWS Mobile Hub projects. Users with this policy attached to their IAM user, role, or

group are allowed to create new projects, modify configuration for existing projects, and delete
projects and resources. This policy also includes all of the permissions that are allowed under the
AWSMobileHub_ ReadOnly managed policy. After you sign in to the Mobile Hub console and create a
project, you can use the following link to view this policy and the IAM identities that are attached to it.

« https://console.aws.amazon.com/iam/home?region=us-east-1#/policies/arn:aws:iam::aws:policy/
AdministratorAccess$jsonEditor

« AWSMobileHub_ReadOnly

This policy provides read-only access to AWS Mobile Hub projects. Users with this policy attached to
their IAM user, role, or group are allowed to view project configuration and generate sample quick
start app projects that can be downloaded and built on a developer's desktop (e.g., in Android Studio
or Xcode). This policy does not allow modification to Mobile Hub project configuration, and it does
not allow the user to enable the use of AWS Mobile Hub in an account where it has not already been
enabled. After you sign in to the Mobile Hub console and create a project, you can use the following
link to view this policy and the IAM identities that are attached to it.

« http://console.aws.amazon.com/iam/home?region=us-east-1#policies/arn:aws:iam::aws:policy/
AWSMobileHub_ReadOnly

If your IAM user, role, or group has read-only permissions for use in an AWS Mobile Hub project, then
the project information you see in the console will not reflect any changes made outside of Mobile
Hub. For example, if you remove a Cloud Logic APl in API Gateway, it may still be present in the Cloud
Logic Functions list of your Mobile Hub project, until a user with mobilehub:SynchronizeProject
permissions visits the console. Users who are granted console access through the AdminstratorAccess
policy have those permissions. If you need additional permissions in Mobile Hub, please contact your
administrator and request the AdminstratorAccess policy.

IAM Authentication and Access Control for Mobile Hub

Note
In depth understanding of AWS IAM, authentication, and access controls are not required to
configure a backend for your mobile app using Mobile Hub.

Mobile Hub uses AWS credentials and permissions policies to allow a user to view and/or create and
configure the back-end features the user selects for their mobile app.

The following sections provide details on how IAM works, how you can use IAM to securely control access
to your projects, and what IAM roles and policies Mobile Hub configures on your behalf.

317

https://alpha-docs-aws.amazon.com/organizations/latest/userguide/orgs_tutorials_basic.html
https://console.aws.amazon.com/iam/home?region=us-east-1#/policies/arn:aws:iam::aws:policy/AdministratorAccess$jsonEditor
https://console.aws.amazon.com/iam/home?region=us-east-1#/policies/arn:aws:iam::aws:policy/AdministratorAccess$jsonEditor
https://console.aws.amazon.com/iam/home?region=us-east-1#policies/arn:aws:iam::aws:policy/AWSMobileHub_ReadOnly
https://console.aws.amazon.com/iam/home?region=us-east-1#policies/arn:aws:iam::aws:policy/AWSMobileHub_ReadOnly

AWS Mobile Developer Guide
AWS Mobile Hub Reference

Topics
« Authentication (p. 318)
o Access Control (p. 319)

Authentication

AWS resources and services can only be viewed, created or modified with the correct authentication
using AWS credentials (which must also be granted access permissions (p. 319) to those resources and
services). You can access AWS as any of the following types of identities:

« AWS account root user

When you sign up for AWS, you provide an email address and password that is associated with your
AWS account. These are your root credentials and they provide complete access to all of your AWS
resources.

Important

For security reasons, we recommend that you use the root credentials only to create an
administrator user, which is an IAM user with full permissions to your AWS account. Then, you
can use this administrator user to create other IAM users and roles with limited permissions.
For more information, see IAM Best Practices and Creating an Admin User and Group in the
IAM User Guide.

» |AM user

An IAM user is simply an identity within your AWS account that has specific custom permissions (for
example, read-only permissions to access your Mobile Hub project). You can use an IAM user name
and password to sign in to secure AWS webpages like the AWS Management Console, AWS Discussion
Forums, or the AWS Support Center.

In addition to a user name and password, you can also generate access keys for each user. You can

use these keys when you access AWS services programmatically, either through one of the several
SDKs or by using the AWS Command Line Interface (CLI). The SDK and CLI tools use the access keys to
cryptographically sign your request. If you don't use the AWS tools, you must sign the request yourself.

« IAM role

An IAM role is another IAM identity you can create in your account that has specific permissions. It
is similar to an IAM user, but it is not associated with a specific person. An IAM role enables you to
obtain temporary access keys that can be used to access AWS services and resources. IAM roles with
temporary credentials are useful in the following situations:

« Federated user access

Instead of creating an IAM user, you can use preexisting user identities from your enterprise user
directory or a web identity provider. These are known as federated users. AWS assigns a role to a
federated user when access is requested through an identity provider. For more information about
federated users, see Federated Users and Roles in the IAM User Guide.

« Cross-account access

You can use an IAM role in your account to grant another AWS account permissions to access your
account's resources. For an example, see Tutorial: Delegate Access Across AWS Accounts Using IAM
Roles in the IAM User Guide.

« AWS service access

You can use an IAM role in your account to grant an AWS service permissions to access your
account's resources. For example, you can create a role that allows Amazon Redshift to access an
Amazon S3 bucket on your behalf and then load data stored in the bucket into an Amazon Redshift
cluster. For more information, see Creating a Role to Delegate Permissions to an AWS Service in the
IAM User Guide.

318

http://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#create-iam-users
http://docs.aws.amazon.com/IAM/latest/UserGuide/getting-started_create-admin-group.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/id_users.html
https://console.aws.amazon.com/
http://docs.aws.amazon.com/IAM/latest/UserGuide/getting-started_create-admin-group.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/getting-started_create-admin-group.html
https://console.aws.amazon.com/support/home#/
http://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html
https://aws.amazon.com/tools/
https://aws.amazon.com/tools/
https://aws.amazon.com/cli/
http://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/introduction_access-management.html#intro-access-roles
http://docs.aws.amazon.com/IAM/latest/UserGuide/tutorial_cross-account-with-roles.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/tutorial_cross-account-with-roles.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html

AWS Mobile Developer Guide
AWS Mobile Hub Reference

« Applications running on Amazon EC2

Instead of storing access keys within the EC2 instance for use by applications running on the
instance and making AWS API requests, you can use an IAM role to manage temporary credentials
for these applications. To assign an AWS role to an EC2 instance and make it available to all of its
applications, you can create an instance profile that is attached to the instance. An instance profile
contains the role and enables programs running on the EC2 instance to get temporary credentials.
For more information, see Using Roles for Applications on Amazon EC2 in the IAM User Guide.

Access Control

You can have valid credentials to authenticate your requests, but unless you have permissions you cannot
access or modify a Mobile Hub project. The same is true for Mobile Hub when it creates and configures
services and resources you have configured for your project.

The following sections describe how to manage permissions and understand those that are being
managed on your behalf by Mobile Hub.

« Control Access to Mobile Hub Projects (p. 314)

Overview of Access Permissions Management for Mobile Hub Projects

Note
In depth understanding of AWS IAM, authentication, and access controls are not required to
configure a backend for your mobile app using Mobile Hub.

Every AWS resource is owned by an AWS account. Permissions to view, create, and/or access the
resources (p. 314) are governed by policies.

An account administrator can attach permissions policies to IAM identities (that is, users, groups, and
roles), and some services (such as AWS Lambda) also support attaching permissions policies to resources.

Note

An account administrator (or administrator user) is a user with administrator privileges. For more
information, see IAM Best Practices in the IAM User Guide.

When granting permissions, you decide who is getting the permissions, the resources they get
permissions for, and the specific actions that you want to allow on those resources.

Topics
» Understanding Resource Ownership for AWS Mobile Hub (p. 319)
« Managing Access to Resources (p. 320)
» Specifying Policy Elements: Actions, Effects, Resources, and Principals (p. 321)

Understanding Resource Ownership for AWS Mobile Hub

The primary resource of a Mobile Hub project is the project itself. In first use of the Mobile Hub console,
you allow Mobile Hub to manage permissions and access the project resource for you. A resource owner
is the AWS account that created a resource. That is, the resource owner is the AWS account of the
principal entity (the root account, an IAM user, or an IAM role) that authenticates the request that creates
the resource. The following examples illustrate how this works:

« If you use the root account credentials of your AWS account to create an AWS Mobile Hub project, your
AWS account is the owner of the resources associated with that project.

« If you create an IAM user in your AWS account and grant permissions to create Mobile Hub projects
to that user, the user can also create projects. However, your AWS account, to which the user belongs,
owns the resources associated with the project.

319

http://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-ec2.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html

AWS Mobile Developer Guide
AWS Mobile Hub Reference

If you create an IAM role in your AWS account with permissions to create AWS Mobile Hub projects,
anyone who can assume the role can create, edit, or delete projects. Your AWS account, to which the
role belongs, owns the resources associated with that project.

Managing Access to Resources

A permissions policy describes who has access to what. The following section explains the available
options for creating permissions policies.

Note

This section discusses using IAM in the context of AWS Mobile Hub. It doesn't provide detailed
information about the IAM service. For complete IAM documentation, see What Is IAM? in the
IAM User Guide. For information about IAM policy syntax and descriptions, see AWS Identity and
Access Management Policy Reference in the IAM User Guide.

Policies attached to an IAM identity are referred to as identity-based policies (IAM polices) and policies
attached to a resource are referred to as resource-based policies.

Topics

« ldentity-Based Policies (IAM Policies) (p. 320)

« Resource-Based Policies (p. 321)

Identity-Based Policies (IAM Policies)

You can attach policies to IAM identities. For example, you can do the following:

Attach a permissions policy to a user or a group in your account? An account administrator can use a
permissions policy that is associated with a particular user to grant permissions for that user to view or
modify an AWS Mobile Hub project.

Attach a permissions policy to a role (grant cross-account permissions) ? You can attach an identity-
based permissions policy to an IAM role to grant cross-account permissions. For example, when

you first enter Mobile Hub and agree, as account principal, to grant it permissions to provision and
configure your project, you are granting the AWS managed MobileHub_Service_Role role cross-
account permissions. An AWS managed policy, AWSMobileHub_ServiceUseOnly, is attached to that
role in the context of your Mobile Hub project. The role has a trust policy that allows Mobile Hub to
act as account principal with the ability to grant permissions for services and resources used by your
project.

For more information about using IAM to delegate permissions, see Access Management in the IAM
User Guide.

As an example of using an identity-based policy, the following policy grants permissions to a user to
create an Amazon S3 bucket. A user with these permissions can create a storage location using the
Amazon S3 service.

"Version":"2012-10-17",
"Statement":[

{
"Effect":"Allow",
"Action":"s3:CreateBucket*",
"Resource":"*"

}

320

http://docs.aws.amazon.com/IAM/latest/UserGuide/introduction.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/access.html

AWS Mobile Developer Guide
AWS Mobile Hub Reference

For more information about using identity-based policies with Mobile Hub , see :ref: reference-mobile-
hub-project-permissions-model °.

For more information about users, groups, roles, and permissions, see Identities (Users, Groups, and
Roles) in the IAM User Guide.

Resource-Based Policies

Other services, such as Amazon S3, also support resource-based permissions policies. For example, you
can attach a policy to an Amazon S3 bucket to manage access permissions to that bucket.

Specifying Policy Elements: Actions, Effects, Resources, and Principals

Each service that is configured by Mobile Hub defines a set of API operations. To grant Mobile Hub
permissions for these API operations, a set of actions is specified in an AWS managed policy. Performing
an APl operation can require permissions for more than one action.

The following are the basic policy elements:

« Resource - In a policy, you use an Amazon Resource Name (ARN) to identify the resource to which the
policy applies.

« Action - You use action keywords to identify resource operations that you want to allow or deny.
For example, the s3:Createbucket permission allows Mobile Hub to perform the Amazon
S3CreateBucket operation.

« Effect - You specify the effect when the user requests the specific action?this can be either allow or
deny. If you don't explicitly grant access to (allow) a resource, access is implicitly denied. You can also
explicitly deny access to a resource, which you might do to make sure that a user cannot access it, even
if a different policy grants access.

« Principal - In identity-based policies (IAM policies), the user that the policy is attached to is the implicit
principal. For resource-based policies, you specify the user, account, service, or other entity that you
want to receive permissions (applies to resource-based policies only).

Exporting and Importing AWS Mobile Hub Projects

Overview

Mobile Hub provides the ability to export and import YAML files that describe the configuration of your
Mobile Hub project. Anyone with an AWS account can import an exported project configuration file to
deploy a new project, with new AWS resources that match the configuration being imported.

This feature enables you to replicate the AWS service configuration of an exported project. While the
data in a project's tables is not exported, files in storage or hosting buckets and API handler function
code can be manually added to your exported project definition. To learn more, see import-export-
manual.

321

http://docs.aws.amazon.com/IAM/latest/UserGuide/id.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/id.html

AWS Mobile Developer Guide
AWS Mobile Hub Reference

Mobile Hub

Your projects list

US East (Virginia June 12, 2017

To export a project configuration file

1. Navigate to your project list in the Mobile Hub console.
2. Hover over the ellipses (three dots) in the upper right of the project card.
3. Choose Export (file) in the upper right of the card for the project you want to export.

4. Save your project export file.

To learn more about the content of an exported project configuration file, see Structure of a Project
Export .yml File (p. 325).

To import a project

1. Navigate to your project list in the Mobile Hub console.

2. Choose Import your project in the upper left of the page.

3. Browse or drag a project definition file into the Import project configuration dialog.
4. Choose Import project.

Sharing Your Project Configuration with a Deploy to AWS Mobile Hub Link

In any public GitHub repo, you can provide a link that instantly kicks off creation of a new Mobile Hub
project by importing the exported project configuration file define in the link's querystring. The form of
the link should be:

https://console.aws.amazon.com/mobilehub/home?#/?config=YOUR-MOBILE-HUB-
PROJECT-CONFIGURATION-LOCATION

For example, the following HTML creates a link that provides instant configuration of an app's AWS
backend services, based on Mobile Hub features defined in react-sample.zip. To see this code in
action, see README . md for the AWS Mobile React Sample.

<p align="center">

<a target="_blank" href="https://console.aws.amazon.com/mobilehub/home?#/?
config=https://github.com/awslabs/aws-mobile-react-sample/blob/master/backend/
import_mobilehub/react-sample.zip">

<img height="100%" src="https://s3.amazonaws.com/deploytomh/button-deploy-aws-

mh.png" />

322

https://github.com/awslabs/aws-mobile-react-sample

AWS Mobile Developer Guide
AWS Mobile Hub Reference

</p>

The querystring portion of the link can point to the location of a Mobile Hub project configuration
mobile-hub-project.yml file or a project export . zip file containing a mobile-hub-project.yml
file.

Important

If you are using a . zip file it must conform to the structure and content required by a
Mobile Hub project configuration import. For details, see Structure of a Project Export .zip
File (p. 325).

Limitations of Importing Projects

Topics
» Maximum Project Definition File Size is TOMB (p. 323)
« Project Components that Require Manual Export (p. 323)
« Cross Account Credentials (p. 323)
» Project Components that Are Not Exported (p. 324)

Maximum Project Definition File Size is T0MB
Import of Mobile Hub project .zip or .yml files larger than TOMB is not supported.
Project Components that Require Manual Export

To enable import of the following project configuration items, you must manually modify your project's
exported . zip file:

» Data User Storage Contents

To import files stored in a User File Storage Amazon S3 bucket in your original project, see Importing
User File Storage Contents (p. 327).

« Hosting and Streaming Contents

To import files hosted in a Hosting and Streaming bucket in your original project, see Importing
Hosting and Streaming Contents (p. 328).

« SAML Federation

To import User Sign-in SAML federation configuration from your original project, see Importing SAML
Federated User Sign-in (p. 329).

« Cloud Logic API Handlers

To import Cloud Logic API handler code and configuration from your original project, see Importing
API Handlers for Cloud Logic APIs (p. 329).

Note

Calling Cloud Logic APIs from a browser requires that Cross-Origin Resource Sharing (CORS)
is configured for each API path. To enable CORS configuration when your project is imported,
see Importing Cross-Origin Resource Sharing (CORS) Configuration (p. 331).

Cross Account Credentials

Some features require credentials and assets that are associated with the AWS account where they are
configured. Mobile Hub projects that contain such features can only be imported into the account that
exported them. Features with this restriction include Cloud Logic APIs that were created outside of the

323

AWS Mobile Developer Guide
AWS Mobile Hub Reference

Mobile Hub project being exported, messaging provider credentials for Push Notification, and Amazon
SNS topics.

Mobile Hub Feature Can be exported from one AWS account and
imported into another?

User Sign-in Yes

NoSQL Database Yes

Cloud Logic Using APIs created within your Mobile Hub project:
Yes

Using APIs imported into your project:

No (for remedy, see Cannot Import an

API (p. 361))
User File Storage Yes
App Content Delivery Yes
Connectors Yes
Push Notifications No (for remedy, see Cannot Import Push

Credentials (p. 362))

Messaging and Analytics (Push Notification) No (for remedy, see Cannot Import Push
Credentials (p. 362))

Project Components that Are Not Exported
The following items are not supported by the Mobile Hub import/export feature:

« Custom policy

When you enable a Mobile Hub feature, a set of AWS services is deployed. Mobile Hub attaches default
access roles and policies to these objects. When a project is imported, the default roles and policies are
applied.

In your original project, you can to modify or add to these defaults; for example, to set access to a
data table to read only. When you export your project configuration, any such customizations are

not included in the project export. To enable your custom policy in an imported project, the importer
must manually configure those policies in the imported project. In addition to your project export
file, we recommend you provide both your policy JSON and step by step instructions for importers.
These instructions should describe how to use AWS consoles or the AWS CLI to implement your
customizations.

» Legacy Cloud Logic

Import and export are not supported for projects using the legacy Cloud Logic feature. A project of
this kind calls Lambda functions directly. The current version of Cloud Logic makes RESTful calls to
Amazon API Gateway APIs linked to Lambda function handlers.

Mobile Hub Project Export Format

AWS Mobile Hub provides the ability to export a YAML file containing the configuration of your project.
The YAML file itself can be imported or it can be included in a . zip file with other project components

324

http://docs.aws.amazon.com/cli/latest/userguide/

AWS Mobile Developer Guide
AWS Mobile Hub Reference

that get deployed during project import. This section describes the anatomy of the YAML and a typical
Mobile Hub project export . zip file. For more information about the Mobile Hub Import/Export feature,
see Exporting and Importing AWS Mobile Hub Projects (p. 321).

Topics
 Structure of a Project Export .zip File (p. 325)
« Structure of a Project Export .yml File (p. 325)

Structure of a Project Export .zip File
When you choose Export (file), Mobile Hub generates a . zip file named for your project.
Default file structure

Mobile Hub also generates a mobile-hub-project.yml project configuration file in the . zip root.
A valid mobile-hub-project.yml file in this location is required for Mobile Hub project import to
succeed.

Example file structure

File structure of the . zip file an exported project, configured to include deployment of both SAML
federation and Cloud Logic API handlers, is as follows:

e /your-project-name.zip
e mobile-hub-project.yml
e saml.xml
e lambda API handler functions
* user data stored files
e hosted files

Files in a project export . zip file can be arranged in folders. The relative paths within the archive must
be reflected in the project definition YAML key values that refer to their paths.

Note
The presence of any files or folders in the project configuration . zip file, other than those
described in the preceding section, may be ignored or cause issues upon import.

Structure of a Project Export .yml File

In the abstract, the basic structure of a Mobile Hub project export . ym1l file is as follows:

features:
FEATURE-TYPE: !com.amazonaws.mobilehub.vO0.:FEATURE-TYPE
components:
FEATURE-NAME: !com.amazonaws.mobilehub.v0.FEATURE-TYPE
attributes:

ATTRIBUTE-NAME: !com.amazonaws.mobilehub.v0.ATTRIBUTE-VALUE
OTHER-FEATURE-PROPERTY-TYPES: OTHER-FEATURE-PROPERTY-VALUES

The following YAML is a sample of the mobile-hub-project.yml exported from a project with many
Mobile Hub features enabled. The project definition has also been manually updated to enable the
import and upload of components of the original project. These components include files stored in the
original project's User File Storage bucket, files hosted in its Hosting and Streaming bucket, and API
handler code in its Lambda functions.

-—- !com.amazonaws.mobilehub.v0.Project
features:

325

AWS Mobile Developer Guide
AWS Mobile Hub Reference

cloudlogic: !com.amazonaws.mobilehub.v0.CloudLogic

components:
api-name: !com.amazonaws.mobilehub.v0.API
attributes:

name: api-name

requires-signin: true

sdk-generation-stage-name: Development

paths:

/items: !com.amazonaws.mobilehub.v0.Function
codeFilename: uploads/lambda-archive.zip
description: "Handler for calls to resource path : /items"
enableCORS: true
handler: lambda.handler
memorySize: "128"
name: handler-name
runtime: nodejsé6.10
timeout: "3"

"/items/{proxy+}": !com.amazonaws.mobilehub.v0.Function
codeFilename: uploads/lambda-archive.zip
description: "Handler for calls to resource path : /items/{proxy+}"
enableCORS: true
handler: lambda.handler
memorySize: "128"
name: handler-name
runtime: nodejsé6.10
timeout: "3"

content-delivery: !com.amazonaws.mobilehub.v0.ContentDelivery
attributes:
enabled: true
visibility: public-global
components:
release: !com.amazonaws.mobilehub.v0.Bucket {}
database: !com.amazonaws.mobilehub.v0.Database
components:
database-nosgl: !com.amazonaws.mobilehub.v0.NoSQLDatabase
tables:

- !com.amazonaws.mobilehub.v0.NoSQLTable
attributes:

id: s

hashKeyName: id

hashKeyType: S

rangeKeyName: ""

rangeKeyType: ""

tableName: _ DYNAMIC_PREFIX___ -bbg-order
tablePrivacy: public

- !com.amazonaws.mobilehub.v0.NoSQLTable
attributes:

id: s

hashKeyName: id

hashKeyType: S

rangeKeyName: ""

rangeKeyType: ""

tableName: _ DYNAMIC_PREFIX___ -bbg restaurants
tablePrivacy: public

- !com.amazonaws.mobilehub.v0.NoSQLTable
attributes:

id: s
restaurant_id: S
hashKeyName: restaurant_id
hashKeyType: S
rangeKeyName: id
rangeKeyType: S
tableName: _ DYNAMIC_PREFIX___ -bbg menu_item
tablePrivacy: public

sign-in: !com.amazonaws.mobilehub.v0.SignIn

attributes:

326

AWS Mobile Developer Guide
AWS Mobile Hub Reference

enabled: true
optional-sign-in: false
components:
sign-in-user-pools: !com.amazonaws.mobilehub.v0.UserPoolsIdentityProvider
attributes:
alias-attributes:
- email
- phone_number
mfa-configuration: ON
name: userpool
password-policy: !com.amazonaws.mobilehub.ConvertibleMap
min-length: "8"
require-lower-case: true
require-numbers: true
require-symbols: true
require-upper-case: true
user-files: !com.amazonaws.mobilehub.v0.UserFiles
attributes:
enabled: true
user-profiles: !com.amazonaws.mobilehub.v0.UserSettings
attributes:
enabled: truename: myProject
region: us-east-1
uploads:
- !com.amazonaws.mobilehub.v0.Upload
fileName: stored-file
targetS3Bucket: user-file.png
- !com.amazonaws.mobilehub.v0.Upload
fileName: hosted-file
targetS3Bucket: hosting.html
- !com.amazonaws.mobilehub.v0.Upload
fileName: api-handler-file.zip
targetS3Bucket: deployments

Manually Exported Project Components
This section describes how to manually add project components to an exported project definition.

Topics
« Importing User File Storage Contents (p. 327)
» Importing Hosting and Streaming Contents (p. 328)
o Importing SAML Federated User Sign-in (p. 329)
» Importing APl Handlers for Cloud Logic APIs (p. 329)
« Importing Cross-Origin Resource Sharing (CORS) Configuration (p. 331)

Importing User File Storage Contents

When a project that enables User File Storage is exported, files stored in its Amazon S3 bucket are not
included in its exported project definition. You can manually configure the project definition to upload

those files to the new bucket of the imported project.
To configure import and upload of project files stored in a User File Storage bucket

1. Uncompress your exported project . zip file.
2. Copy and paste each file that you want uploaded during import into the unzipped file folder.
3. Add file paths to your exported project definition:

a. Open the mobile-hub-project.yml file of the export in an editor.

b. If not already present, create an uploads: node at the root level.

¢. For each file to be uploaded, add the following three items under uploads:.

327

AWS Mobile Developer Guide
AWS Mobile Hub Reference

. The namespace - !com.amazonaws.mobilehub.v0.Upload
i. The key fileName: with the value of the path to the file within the project definition
.The key targetS3Bucket: with the value of user-files.

.zip file.

-—- !com.amazonaws.mobilehub.v0.Project
features:
sign-in: !com.amazonaws.mobilehub.v0.SignIn {}
user-files: !com.amazonaws.mobilehub.v0.UserFiles
attributes:
enabled: true
user-profiles: !com.amazonaws.mobilehub.v0.UserSettings
attributes:
enabled: true
name: userfiles
region: us-east-1
uploads:
- !com.amazonaws.mobilehub.v0.Upload
fileName: {examplel.png}
targetS3Bucket: user-files
- !com.amazonaws.mobilehub.v0.Upload
fileName: {example2.xml}
targetS3Bucket: user-files

4. Rezip the files within the uncompressed project definition file (not the folder containing those files,
because that causes a path error).

Importing Hosting and Streaming Contents

When a project that enables Hosting and Streaming is exported, files stored in its Amazon S3 bucket
are not included in the exported project definition. You can manually configure the project definition to
upload those files to the new bucket of the imported project.

To configure import and upload of project files stored in a Hosting and Streaming bucket

1. Uncompress your exported project . zip file.
2. Copy and paste each file that you want uploaded during import into the unzipped file folder.
3. Add file paths to your exported project definition:

a.
b.
C.

Open the mobile-hub-project.yml file of the export in an editor.

If not already present, create an uploads: node at the root level.

For each file to be uploaded, add the following three items under uploads:.
i.

The namespace - !com.amazonaws.mobilehub.v0.Upload

ii. The key fileName: with the value of the path to the file within the project definition . zip file.
iii. The key targetS3Bucket: with the value of hosting.

-—- !com.amazonaws.mobilehub.v0.Project
features:
content-delivery: !com.amazonaws.mobilehub.v0.ContentDelivery
attributes:
enabled: true
visibility: public-global
components:
release: !com.amazonaws.mobilehub.v0.Bucket {}

uploads:
- !com.amazonaws.mobilehub.v0.Upload

328

AWS Mobile Developer Guide
AWS Mobile Hub Reference

fileName: {examplel.html}
targetS3Bucket: hosting

- !com.amazonaws.mobilehub.v0.Upload
fileName: {example2.js}
targetS3Bucket: hosting

4. Rezip the files within the uncompressed project definition file (not the folder containing those files,
because that causes a path error).

Importing SAML Federated User Sign-in

Configuring SAML federation for the Mobile Hub User Sign-in feature requires you to supply the SAML
XML configuration (saml . xm1) of the identity provider you federate. The SAML XML configuration is not
included in the . zip file exported by Mobile Hub.

To configure an exported project to deploy the original project's SAML federation when it is
imported

1. Uncompress your exported project . zip file.
2. Copy your identity provider's saml . xm1 file into the root folder of the uncompressed . zip file.

3. Rezip the files within the uncompressed project definition file (not the folder containing those files,
because that causes a path error).

Importing APl Handlers for Cloud Logic APIs

The Mobile Hub Cloud Logic feature pairs a RESTful API surface (APl Gateway) with serverless API
handler functions (Lambda). While Mobile Hub supports exporting and importing the definitions of API
and handler objects that Cloud Logic configures, the APl handler function code is not exported.

Mobile Hub enables you to manually configure your project export . zip file to deploy your APl handler
function code as part of the project import when the following conditions are met:

« Your APl handler accesses only DynamoDB tables. Import of APl handlers that access other AWS
services, such as Amazon S3, is not currently supported.

« Your handler code is factored to use Lambda environmental variables to refer to those DynamoDB
tables.

When Mobile Hub imports APl handler code, it uses environmental variables to map data operations
to the new tables created by the import. You can define the key name of environmental variables

in the project's definition YAML to match constant names you define in the project's Lambda API
handler function code. The following example shows a Lambda function constant being equated to an
environmental variable.

const YOUR-FUNCTION-CONSTANT-NAME = process.env.KEY-NAME-DEFINED-IN-YAML;";

// example
const MENU_TABLE_NAME = process.env.MENU TABLE_ NAME;

The steps that follow these notes describe how to define your environmental variables in project
definition YAML.

Note

An alternative is to use the MOBILE_HUB_DYNAMIC_PREFIX project identifier prefix that
Mobile Hub generates. Mobile Hub configures its value to be the unique identifier for the
imported project. When you append a valid table name to that prefix in your function code,
it composes a valid identifier for the table in the imported project. The following example
shows a Lambda function constant being equated to an environmental variable.

329

http://docs.aws.amazon.com/lambda/latest/dg/tutorial-env_cli.html

AWS Mobile Developer Guide
AWS Mobile Hub Reference

const YOUR-FUNCTION-CONSTANT-NAME = process.env.MOBILE_HUB_DYNAMIC_PREFIX + "-
YOUR-TABLE-NAME" ;

// example
const MENU_TABLE_NAME = process.env.MOBILE_HUB_DYNAMIC_PREFIX + "-bbg-menu";

This method does not require additional manual configuration of the project definition YAML.

The AWS Mobile React sample app provides an end to end example of using environmental variables to
access data tables through an APl and its handler. Take the following steps for each API handler whose
code you want to import. Examples from the sample app are given in line.

To enable import of |LAM| handler functions for your exported Cloud Logic API

1. Uncompress your exported project . zip file.
2. Copy your Lambda function(s) into the uncompressed file.
a. Go to the Amazon S3 console and search for your Mobile Hub project name.
b. Choose the bucket with the name containing -deployments-, then choose the uploads folder.
¢. Copy and save the name(s) of the Lambda function file(s) in the folder for use in following steps.
d. Copy the Lambda function file(s) in the folder into your unzipped exported project file.
3. Add file paths to your exported project definition.
a. Open the mobile-hub-project.yml file of the export in an editor.
b. If not already present, create an uploads: node at the root level.
¢. For each file to be uploaded, add the following three items under uploads:.
i. The namespace - !com.amazonaws.mobilehub.v0.Upload
ii. The key fileName: with the value of the path to the file within the project definition . zip file.
iii. The key targets3Bucket: with the value of deployments.

d. If not already present in each Cloud Logic . . . paths: items node, create a codeFilename:
key with the value of the path of the Lambda function code file for that handler.
Note

The path in this case is relative to the root of the ~-deployments-Amazon S3 bucket
Mobile Hub provisioned for Cloud Logic. Typically, Mobile Hub places these files in an /
uploads folder.

If no codeFilenane is specified, then Mobile Hub deploys a default handler that echos
requests it receives.

e. Add environmental variables to your exported project definition.

For each Cloud Logic . . . paths: items node that describes a handler that interacts with

a DynamoDB table, add an environment: node with child members that are composed by
concatenating an environmental variable name, with the string __ DYNAMIC_ PREFIX_ , and the
associated table name. The variable name should map to the associated variable in your Lambda
API handler function code.

-—- !com.amazonaws.mobilehub.v0.Project
features:
cloudlogic: !com.amazonaws.mobilehub.v0.CloudLogic
components:
api-name: !com.amazonaws.mobilehub.v0.API
attributes:
name: api-name
requires-signin: true
sdk-generation-stage-name: Development
paths:

330

https://github.com/awslabs/aws-mobile-react-sample
https://console.aws.amazon.com/s3/

AWS Mobile Developer Guide
AWS Mobile Hub Reference

/items: !com.amazonaws.mobilehub.v0.Function

codeFilename: {uploads/lambda-archive.zip}

description: "Handler for calls to resource path : /items"

enableCORS: true

handler: lambda.handler

memorySize: "128"

name: handler-name

runtime: nodejsé6.10

timeout: "3"

environment:
{MENU_TABLE_NAME}: ___ DYNAMIC_PREFIX___ {-bbg menu_item}
{ORDERS_TABLE_NAME}: ___ DYNAMIC_PREFIX___ {-bbg orders}
{RESTAURANTS_TABLE NAME}: ___ DYNAMIC_PREFIX___ -{bbg restaurants}

"/items/{proxy+}": !com.amazonaws.mobilehub.v0.Function

codeFilename: {uploads/lambda-archive.zip}

description: "Handler for calls to resource path : /items/{proxy+}"

enableCORS: true

handler: lambda.handler

memorySize: "128"

name: handler-name

runtime: nodejsé6.10

timeout: "3"

environment:
{MENU_TABLE_NAME}: ___ DYNAMIC_PREFIX __ {-bbg menu_item}
{ORDERS_TABLE_NAME}: ___ DYNAMIC PREFIX___ {-bbg orders}
{RESTAURANTS_TABLE_NAME}: ___ DYNAMIC_ PREFIX___ -{bbg restaurants}

uploads:

- !com.amazonaws.mobilehub.v0.Upload
fileName: {lambda-archive.zip}
targetS3Bucket: deployments

- !com.amazonaws.mobilehub.v0.Upload
fileName: {lambda.jar}
targetS3Bucket: deployments

4, Save the .yml file and rezip the files within the uncompressed project definition file (not the folder
containing those files, because that causes a path error).

5. Test your revised project export definition by importing it through the Mobile Hub console. You can
verify your environmental variables through the Lambda console.

Note

By default, the Mobile Hub NoSQL Database feature configures a table's permissions to grant
read and write access for Lambda functions. The kind of custom IAM policy configuration
required to change the table's permissions is not included in the export of a project. An importer
of a project dependent on custom policy needs enough information to recreate the policy

once they have imported the project. For such a case, we recommend you provide both your
policy JSON and step by step instructions (console or AWS CLI) on how and where to attach

it. For more information on those steps, see Authentication and Access Control for Amazon
DynamoDB.

Importing Cross-Origin Resource Sharing (CORS) Configuration

By default, AWS security infrastructure prevents calls to an APl Gateway API from a browser. Configuring
CORS for each path of your API securely enables your API calls over the web. CORS configuration is not
included in Mobile Hub project export. The following steps describe how to manually include import of
CORS configuration in your project export file.

To include CORS configuration for your |ABP| API paths

1. Unzip your exported project definition . zip file.

331

http://docs.aws.amazon.com/lambda/latest/dg/authentication-and-access-control.html
http://docs.aws.amazon.com/lambda/latest/dg/authentication-and-access-control.html

AWS Mobile Developer Guide
AWS Mobile Hub Reference

2. Open the export's mobile-hub-project.yml file in an editor.

3. For each API path, add a key named enableCORS with the value true under ... paths: "/
items/. . .": !com.amazonaws.mobilehub.v0.Function, as shown in the following
fragment.

--- !com.amazonaws.mobilehub.v0.Project

features:
cloudlogic: !com.amazonaws.mobilehub.v0.CloudLogic
components:
ReactSample: !com.amazonaws.mobilehub.v0.API

attributes:
name: ReactSample
requires-signin: false

paths:

"/items/{proxy+}": !com.amazonaws.mobilehub.v0.Function
name: FirstHandler
handler: lambda.handler
enableCORS: true
runtime: nodejsé6.10

4. Rezip the files within the uncompressed project definition file (not the folder containing those files,
because that causes a path error).

AWS Mobile Hub Features

AWS Mobile Hub is a service that enables even a novice to easily deploy and configure mobile app
backend features using a range of powerful AWS services.

You create a free project, then choose and configure mobile app features using a point and click console.
Mobile Hub takes care of the complexities in the background and then supplies you with step by step
integration instructions.

Topics
o Cloud Logic (p. 332)
o NoSQL Database (p. 335)
» Messaging and Analytics (p. 340)
« Hosting and Streaming (p. 342)
« Conversational Bots (p. 346)
« User Sign-in (p. 348)
« User File Storage (p. 353)

Cloud Logic

Choose the AWS Mobile Hub Cloud Logic mobile backend service feature to:

« Add business logic functions in the cloud with no cost for server set up or maintenance
« Extend your app to other services within AWS and beyond

Create a free Mobile Hub project and add the Cloud Logic feature.

Feature Details

The following image show Cloud Logic using the combination of Amazon API Gateway and AWS Lambda
to implement serverless business logic and extension to other services.

332

https://console.aws.amazon.com/mobilehub/home#/

AWS Mobile Developer Guide
AWS Mobile Hub Reference

—
. wd 2 API | n
Mobile App w 3 Gateway Lambda »?engﬁ?eg
Amazon 4) 4) g Amazon S3
Cognito IAM Your
* Security Business Amazon SN
e Throttling LOg'?
| o * nodejs Amazon DynamoDB
1| |* Monitoring « Java
: Python Other AWS Services
RESTAPICALL > 1 > HANDLE
' A J
1 N il
/ Amazon VPC
f —

* Subnets

« Security

The Cloud Logic feature lets you build backend services using AWS Lambda functions that you can call
from your mobile app. Using Cloud Logic, you can run code in the cloud to process business logic for
your apps and share the same code for both iOS and Android apps. The Cloud logic feature is powered
by AWS Lambda functions, which allow you to write code without worrying about managing frameworks
and scaling backend infrastructure. You can write your functions in JavaScript, Java, or Python.

The Lambda functions you create are exposed to your app as a REST APl by Amazon API Gateway which
also provides a single secure endpoint with flexible traffic monitoring and throttling capabilities.

Cloud Logic At a Glance

AWS services and resources configured « Amazon API Gateway (see Amazon API
Gateway Developer Guide)

Concepts | Console | Pricing

« AWS Lambda (see AWS Lambda Developer
Guide)

Concepts | Console | Pricing

« Amazon Virtual Private Cloud (see Amazon
VPC User Guide)

Concepts | Console | Pricing

« AWS CloudFormation (see AWS
CloudFormation User Guide)

Concepts | Console | Pricing

Mobile Hub-enabled features use Amazon Cognito
for authentication and IAM for authorization. For
more information, see User Sign-in (p. 348). For
more information, see Viewing AWS Resources
Provisioned for this Feature (p. 334).

Configuration options This feature enables the following mobile
backend capabilities:

333

https://aws.amazon.com/lambda/getting-started/
http://docs.aws.amazon.com/apigateway/latest/developerguide/
http://docs.aws.amazon.com/apigateway/latest/developerguide/
http://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-basic-concept.html
https://console.aws.amazon.com/apigateway/
https://aws.amazon.com/api-gateway/pricing/
http://docs.aws.amazon.com/lambda/latest/dg/
http://docs.aws.amazon.com/lambda/latest/dg/
http://docs.aws.amazon.com/lambda/latest/dg/
https://console.aws.amazon.com/lambda/
https://aws.amazon.com/lambda/pricing/
http://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/
http://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/
http://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_Introduction.html#Overview
https://console.aws.amazon.com/vpc/
http://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_Introduction.html#Paying
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/cfn-whatis-concepts.html
https://console.aws.amazon.com/cloudformation/home
https://aws.amazon.com/cloudformation/pricing/

AWS Mobile Developer Guide
AWS Mobile Hub Reference

« Provides a default Hello World Lambda function
that accepts the parameter value entered by the
app user and returns it back to an app.

« Enables you to choose an existing function
from the list provided or use the AWS Lambda
console to create new functions.

Quickstart app demos This feature adds the following functionality to a
quickstart app generated by Mobile Hub:

« User can specify an AWS Lambda function by
name, provide parameters and call a function
and see the value returned by the function

Viewing AWS Resources Provisioned for this Feature

The following image shows the Mobile HubResources pane displaying elements typically provisioned for
the Cloud Logic feature.

Mobile Hub Cltest11-6-1042

I'U'Ianage your resources

[:-'J Amazon Cognito ldentity Pools * Amazon 53 Buckets
Amazon Cognite provides identifiers and secure access tokens for your app Amazon 53 allows you to store files in the cloud organized in buckets.
users based on their authentication state So you £an ensure SeCUMe ACCess 1o Depending on which features you have configured, we have provisioned
your AWS services withaut embedding develoges credentials in your mobile buckets for User Data Storage and for App Content Delivery.
app. To provide secure access for your project, the AWS Mobile Hub has

provisioned an Amazan Cognito Identity Pool chtest-deployments-mobilehub- 1942779491

cltest_MOBILEHUB_ 1942779431 =

4 AP Gateway

AP| Gateway configures APIs for your cloud logic. The APIs you have created
ane listed below.

B AWS Lambda Functions
Amazon Lambda runs youws code in the cloud so you can execute backend logic AP11-MobileHub-1533366766
fae yeur app. Each functisn that you have created is listed below,

Created-MobileHub-1942779491 &
Created-itemsHandler1-mobilchub-1342773431

Created-itemsHandlerZ-mobilehub-1942779491

? AWS Identity and Access Management Roles
AWS Identity and Access Management (IAM) securely controls access to AWS
services and resources. The following IAM roles provide Mobile Hub the
permissions it needs to administer your resources and provide your users.
access o the features you configure.

MobileHub_Serviee_Raole 1
chtest_unauth_MOBILEHUB_1942773491 &

MOBILEHUB-13942773491-Developme-lambdaexecutionrole-UITSJUTISFIC
>

Quickstart App Details

Your quickstart app includes code to use AWS Lambda APIs to invoke any functions you have selected in
your project. Adding Cloud Logic to your quickstart app provides a Hello World default Lambda function.
You can also choose an existing Lambda function from your AWS account, or you can create a new one.
When you choose the edit button, you are taken to the function editor in the AWS Lambda console. From

the Lambda console, you can edit the code directly or upload a package of source and libraries as a .zip
file.

334

AWS Mobile Developer Guide
AWS Mobile Hub Reference

In the demo screen of the Cloud Logic quickstart app, you can enter the name and input parameters
of the Lambda function you wish to invoke. The quickstart app then calls your Lambda function and
displays the results it returns.

NoSQL Database
Choose the Mobile Hub NoSQL Database mobile backend feature to:

« Add easy to develop database capabilities with scalable performance and cost

Create a free Mobile Hub project and add the NoSQL DB feature in minutes.
Feature Details

The following image shows the typical connection between a mobile app and Amazon DynamoDB using
the NoSQL pattern.

Mobile App . Amazon DynamoDB
Amazon 4 N
F-LI Cognito T IAM NoSQL Table &
- Indexes
—l-Jl [Jrmnss [t |
> |
|
. | .
\, —

The NoSQL Database feature uses Amazon DynamoDB to enable you to create database tables that can
store and retrieve data for use by your apps.

NoSQL databases are widely recognized as the method of choice for many mobile backend solutions
due to their ease of development, scalable performance, high availability, and resilience. For more
information, see From SQL to NoSQL in the Amazon DynamoDB Developer Guide.

NoSQL Database At a Glance

AWS services and resources configured « Amazon DynamoDB Tables (see Working with
Tables in DynamoDB)

Concepts | Console | Pricing

Mobile Hub-enabled features use Amazon Cognito
for authentication and IAM for authorization. For
more information, see User Sign-in (p. 348). For
more information, see Viewing AWS Resources
Provisioned for this Feature (p. 339).

Configuration options This feature enables the following mobile app
backend capabilities:

Configuring Your Tables (p. 337) - Using custom
schema, based on a sample schema provided, or

335

https://console.aws.amazon.com/mobilehub/home#/
https://aws.amazon.com/dynamodb/
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/SQLtoNoSQL.html
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/WorkingWithTables.html
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/WorkingWithTables.html
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/
https://console.aws.amazon.com/dynamodb/home
https://aws.amazon.com/dynamodb/pricing/

AWS Mobile Developer Guide
AWS Mobile Hub Reference

by using a wizard that guides you through choices
while creating a table.

Data Permissions (p. 337) - Access to your app's
data can be:

 Public (enables any mobile app user to read or
write any item in the table).

« Protected (enables any mobile app user to read
any item in the table but only the owner of an
item can update or delete it).

 Private (enables only the owner of an
item to read and write to a table) For more
information, see Configuring the NoSQL
Database Feature (p. 336).

For more information, see Configuring the NoSQL
Database Feature (p. 336).

Quickstart app demos This feature adds the following to a quickstart
app generated by Mobile Hub:

« Insert and remove sample data, based on the
schema you specify in the console.

» Perform and see the results of NoSQL
operations on tables including Get, Scan, and all
the example queries displayed by the console as
you make design selections.

Configuring the NoSQL Database Feature
This section describes steps and options for configuring NoSQL Database features in Mobile Hub.
To add the NoSQL Database feature to your |AMH| project

1. Choose Enable NoSQL.
2. Choose Add a new table.

3. Choose the initial schema for the table. You can use a provided example schema, or generate a
schema through the wizard.

Example Table Schemas

AWS Mobile Hub provides a set of example table schemas for typical mobile apps. If you create a table
using one of the example schema templates, the table initially has a set of attributes specific to each
example. You can choose one of these templates as the starting schema for your table:

« News, which stores author, title, article content, keywords, and other attributes of news articles.
« Locations, which stores names, latitude, and longitude of geographic locations.

« Notes, which stores private notes for each user.

« Ratings, which stores user ratings for a catalog of items.

« Graffiti Wall, which stores shared drawing items.

To add a table using one of the example schema templates in your |AMH| project

336

AWS Mobile Developer Guide
AWS Mobile Hub Reference

1. Choose the example template to use for the initial schema of the table.

2. Type a new name in Table name to rename the table if you wish. Each template gives the table a
default name matching the name of the template.

3. Choose Public, Protected, or Private permissions to grant to the mobile app users for the table. For
more information, see Data Permissions (p. 337).

4. (Optional) Under What attributes do you want on this table?, you can add, rename, or delete table
attributes.

5. (Optional) Choose Add index to add name, partition key, and (optionally) sort key for a secondary
index for your table.

6. Choose Create table.

Configuring Your Tables
This section describes options for configuring DynamoDB NoSQL tables for your app.

Topics
« NoSQL Table Terminology (p. 337)
« Data Permissions (p. 337)

NoSQL Table Terminology

Similar to other database management systems, DynamoDB stores data in tables. A table is a collection
of data with the following elements.

Items

« Each table contains multiple items. An item is a group of attributes that is uniquely identifiable among
all of the other items. Items are similar to rows, records, or tuples in relational database systems.

Attributes

« Attributes are the columns in a DynamoDB table. The rows of the table are the individual records you
add, update, read, or delete as necessary for your app.

The table schema provides a set of initial attributes based on the needs of each example. You can
remove any of these attributes by choosing Remove. If you remove the partition key attribute, then
you must designate another attribute as the partition key for the primary index of the table.

You can choose Add attribute to add a blank attribute to the table. Give the attribute a name, choose
the type of data it will store, and choose whether the new attribute is the partition key or the sort key.

Indexes

« Each table has a built-in primary index, which has a partition key and may also have a sort key. This
index allows specific types of queries. You can see the types of queries the table can perform by
expanding the Queries this table can perform section. To enable queries using other attributes, create
additional secondary indexes. Secondary indexes enable you to access data using a different partition
key and optional sort key from those on the primary index.

Data Permissions

Best practice for data security is to allow the minimum access to your tables that will support your app
design. Mobile Hub provides two methods to protect your data: user authentication using the User Sign-
in (p. 348) feature; and NoSQL Database data table user permissions.

337

AWS Mobile Developer Guide
AWS Mobile Hub Reference

Note: When NoSQL Database is enabled your app communicates directly with the DynamoDB service.
If you do not make the User Sign-in (p. 348) feature Required then, where not blocked by table user
permissions, unauthenticated users will have access to read and/or write data.

Grant Permissions Only to Authenticated Users

Unless users who have not signed-in need to read or write data in a table in your app, scope down access
by requiring users to sign in (authenticate) before they are allowed to use app features that perform
database operations. The AWS Mobile Hub User Sign-in (p. 348) feature offers a range of methods

for authenticating users that includes: federating with a sign-in provider like Facebook, Google, Active
Directory, or your existing custom service. In a few clicks, you can also create your own sign-in provider
backed by AWS services.

To add User Sign-in to your app, use the Configure more features button on a feature configuration
page, or the Configure icon on the left. Then choose and enable User Sign-in.

Grant Permissions to Table Data Items Per User

When you create a new table in NoSQL Database, you choose between Public, Private, or Protected
options, to determine which app users can read or write the table's data. Mobile Hub attaches a fine-
grained access control policy to the table, that can restrict the operations available to a user based on
whether or not they are the creator of data being accessed.

Public

« Public permissions allow all users to read or update all items (data rows) in the table.

Protected

« Protected permissions allow all users to read all items in the table, but only the owner of an item can
update or delete that item.

Private

« Private permissions allow only the owner of an item to read or write to it.

Note

Users own a data item if their Amazon Cognito identity ID matches the value of the item's
primary key.

If you choose Protected or Private permissions for a table, then the partition key of the table
must be user1d, and be of type string. Secondary indexes for protected or private tables
follow the same pattern as primary indexes.

When a user creates an item in a protected or private table, AWS populates the value of the
item's primary key with that user's Amazon Cognito identity ID.

Enforcement happens when a data operation is attempted on a protected or private item. IAM
will check if the item's userId matches the current user's Amazon Cognito identity ID, and
allow or prevent the operation based on the policy attached to the table.

When you choose Public, permissions for a table there is no ownership enforcement. There are
no restrictions on name or data type of the primary key and secondary index primary keys of a
public table.

Managing Permissions to Restricted Items for Multiple Writers

After Mobile Hub provisions access restrictions for your tables with Protected or Private permissions,
IAM ensures that only the mobile app user whose action creates an item in the table will be able to
write to the attribute values of that item. To design your schema for the case where multiple users need
to write data to an existing item, one strategy is to structure your schema in a way that users write to
different tables. In this design, the app queries both tables to join data.

338

AWS Mobile Developer Guide
AWS Mobile Hub Reference

For example, customers may create orders in an orders table and delivery service drivers may write
delivery tracking information to a deliveries table, where both tables have secondary indexes that
allow fast lookup based on orderId or customerId.

Retrieving Data
The operations you can use to retrieve data from your NoSQL database include the following:

« Get, which retrieves a single item from the table based on matching the primary key.
« Query, which finds items in a table or a secondary index using only primary key attribute values.

« Scan, which reads every item in a table or secondary index. By default, a Scan operation returns
all of the data attributes for every item in the table or index. You can use Scan to return only some
attributes, rather than all of them.

e Query with Filter s, which performs a :code: Query but returns results that are filtered
based on a filter expression you create.

e Scan with Filters, which performs a Scan but returns results that are filtered based on a filter
expression you create.

For more information, see Query and Scan Operations in DynamoDB.

Viewing AWS Resources Provisioned for this Feature

The following image shows the Mobile HubResources pane displaying the AWS elements typically
provisioned for the NoSQL Database feature:

Mobile Hub nosqglkdatabase-sample

Manage your resources E
. Amazon DynamoDB Tables [‘FJ Amazon Cognito Identity Pools
Amazon DynamoDB is a fast, flexible NoSQL database. Amazon Cognito provides identifiers and secure access
Mobile hub uses Dynamo DB for your Database feature. tokens for your app users based on their authentication state

S0 yOU can ensure secure access to your AWS services
without embedding developer credentials in your maobile app.
To provide secure access for your project, the AWS Mobile
l]ﬁ_] Hub has provisioned an Amazon Cognito |dentity Pool

nosqgldatabasesample-mobilehub-1888054916-News &

Taakbaad nosgldatabasesample_MOEBILEHUB_1888054916 &
=] g AWS |dentity and Access Management
Resources Roles

AWS Identity and Access Management (IAM) securely
controls access to AWS services and resources. The
following [AM roles provide Mobile Hub the permissions it
needs to administer your resources and provide your users
access to the features you configure.

MobileHub_Service_Role &

nosgldatabasesample_unauth_MOBILEHUB_1888054916 &

Quickstart App Details

In the Mobile Hub quickstart app, the NoSQL Database demo shows a list of all tables created during
app configuration. Selecting a table shows a list of all queries that are available for that table, based on

339

http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/QueryAndScan.html

AWS Mobile Developer Guide
AWS Mobile Hub Reference

the choices made regarding its primary indexes, secondary indexes, and sort keys. Tables that you make
using the example templates enable an app user to insert and remove sample data from within the app.

Messaging and Analytics
Choose the AWS Mobile Hub Messaging and Analytics feature to:

« Gather data to understand your app users' behavior

« Use that information to add campaigns to engage with your users through push notification, e-mail,
and SMS

Create a free Mobile Hub project and add the Messaging and Analytics feature.
Feature Details

AWS Mobile Hub Messaging and Analytics (formerly User Engagement) helps you understand how your
users use your app. It enables you to engage them through push notification, e-mail, or SMS. You can tie
your analytics to your messaging so that what you communicate flows from users' behavior.

The following image shows Messaging and Analytics using Amazon Pinpoint to collect usage data from a
mobile app. Amazon Pinpoint then sends messaging to selected app users based on the campaign logic
designed for the app.

Mobile App Amazon Pinpoint

Amazon L] (\
L | Cognito 1AM Dashboard

-~ =,

Analytics
+ Basic Session Data
+ Custom Metrics
* Purchase Metrics N
* Campaign metrics e o

|
Voo

R N
{ \\j
|
Push Notification 'Sl“ /—\
| Campaigns —
E-mail * User segmentation User
@ < * Scheduling logic < Segment
+ Driven by analytics Import
SM5

r W \ /
To use

You can configure messaging and analytics functions separately, or use the two together to carry out
campaigns to interact with your users based on the their app usage. You can configure which users
receive a campaign's messaging, as well as the conditions and scheduling logic for sending messages.
You can configure notifications to communicate text or cause a programatic action, such as opening an
application or passing custom JSON to your client.

When you choose Analytics, Amazon Pinpoint performs capture, visualization, and analysis of app usage
and campaign data:

« By default, Amazon Pinpoint gathers app usage session data.
« If you configure a campaign, metrics about your campaign are included.

« If you add custom analytics to your app, you can configure Amazon Pinpoint to visualize those metrics
and use the data as a factor in your campaign behavior. To learn more about integrating custom
analytics, see Integrating Amazon Pinpoint With Your App in the Amazon Pinpoint User Guide.

340

https://console.aws.amazon.com/mobilehub/home#/
http://docs.aws.amazon.com/pinpoint/latest/userguide/welcome.html
http://docs.aws.amazon.com/pinpoint/latest/developerguide/mobile-sdk.html

AWS Mobile Developer Guide
AWS Mobile Hub Reference

« Amazon Pinpoint enables you to construct funnel analytics, which visualize how many users complete
each of a series of step you intend them to take in your app.

« To perform more complex analytics tasks, such as merging data from more than one app or making
flexible queries, you can configure Amazon Pinpoint to stream your data to Kinesis. To learn more
about using Amazon Pinpoint and Kinesis together, see Streaming Amazon Pinpoint Events to Amazon
Kinesis.

When you choose Messaging you can configure your project to enable Amazon Pinpoint to send:

« Send Push Notifications to your Android users, through Firebase/Google Cloud Messaging, or iOS,
through APNs

« E-mails to your app users using the sender ID and domain of your choice
» SMS messages

Once you have enabled Messaging and Analytics options in your Mobile Hub project, use the Amazon
Pinpoint console to view visualizations of your analytics or configure your user segments and campaigns.
You can also import user segment data into Amazon Pinpoint to use campaigns for any group of users.

Messaging and Analytics At a Glance

AWS services and resources configured « Amazon Pinpoint (see Amazon Pinpoint
Developer Guide)

Concepts | Console

Mobile Hub-enabled features use Amazon Cognito
for authentication and IAM for authorization. For
more information, see User Sign-in (p. 348).

Configuration options This feature enables the following mobile
backend capabilities:

« Gather and visualize analytics of your app users'
behavior.

« Integrate Amazon Pinpoint user engagement
campaigns into your mobile app.

o Communicate to app users using push
notifications through APNs, GCM, and FCM.

« via Firebase or Google Cloud Messaging
(FCM/GCM) (see Setting Up Android Push
Notifications)

« via Apple Push Notification service (APNs)
(see Setting Up iOS Push Notifications)

For more information, see Configuring Push
Notification.

« Communicate to app users through e-mail.
« Communicate to app users through SMS.

Quickstart app demos This feature adds User Engagement functionality
to a quickstart app generated by Mobile Hub:

« Demonstrate enabling the app user to receive
campaign notifications. The app user can cause

341

http://docs.aws.amazon.com/pinpoint/latest/userguide/analytics-funnels.html
http://docs.aws.amazon.com/pinpoint/latest/userguide/analytics-streaming-kinesis.html
http://docs.aws.amazon.com/pinpoint/latest/userguide/analytics-streaming-kinesis.html
https://console.aws.amazon.com/pinpoint/home
https://console.aws.amazon.com/pinpoint/home
http://docs.aws.amazon.com/pinpoint/latest/developerguide/welcome.html
http://docs.aws.amazon.com/pinpoint/latest/developerguide/welcome.html
http://docs.aws.amazon.com/pinpoint/latest/userguide/welcome.html
https://console.aws.amazon.com/pinpoint/home
http://docs.aws.amazon.com/pinpoint/latest/developerguide/mobile-push-android.html
http://docs.aws.amazon.com/pinpoint/latest/developerguide/mobile-push-android.html
http://docs.aws.amazon.com/pinpoint/latest/developerguide/apns-setup.html
https://alpha-docs-aws.amazon.com/pinpoint/latest/developerguide/mobile-push.html
https://alpha-docs-aws.amazon.com/pinpoint/latest/developerguide/mobile-push.html

AWS Mobile Developer Guide
AWS Mobile Hub Reference

events that generate session, custom, campaign
and purchase data. Analytics for these events

is available in the Amazon Pinpoint console in
close to real time.

« Demonstrate providing the app user with a view
of an Amazon Pinpoint data visualization, on
their mobile phone.

Hosting and Streaming

Choose AWS Mobile Hub Hosting and Streaming to:

« Host content for you mobile web, native mobile or hybrid app
« Distribute your content through a global Content Delivery Network (CDN)

« Stream your media
Create a free Mobile Hub project with Hosting and Streaming. Get a custom sample app and SDK.

Feature Details

The Hosting and Streaming feature delivers content through a global network of endpoints using
Amazon Simple Storage Service (Amazon S3) and Amazon CloudFront.

The following image shows how website assets and streaming media are distributed to a mobile web app
or browser. The web app is shown requesting AWS credentials and accessing AWS services through the
AWS SDK for JavaScript.

Amazon 33

Mobile Web App ! ORIGIN (Source)

GLOBAL CDN
‘ Amazon Cloudfront

1
AWSSDKfor 1
JavaSeript |
Browser -
= =]
"y
@ Amazon 1.. 1AM Eebnlgfge'; ! \
= | Cogpnito , kl \‘
y Authorization I B storage
T Authentication Ifl il Messagin Lo %
s /
web app assets 1 9 .
P 1 £ Databas ot A g
streamed media e £, i
1 UMore ¢ 7
~ -
J [

The following image shows a native or hybrid mobile app requesting AWS credentials to access content
from a CDN edge location.

342

https://console.aws.amazon.com/mobilehub/home#/
https://aws.amazon.com/s3/
https://aws.amazon.com/cloudfront/
http://docs.aws.amazon.com/sdk-for-javascript/v2/developer-guide/welcome.html

AWS Mobile Developer Guide
AWS Mobile Hub Reference

Native or
Hybrid Mobile App

Amazon
- I cognito T AM

P GLOBAL CDN _
Amazon Cloudfront ORIGIN (Source)
v * Amazon S3

‘

|

web / mobile app assets

streamed media

The Hosting and Streaming feature enables you to host website and app assets in the cloud, such as
HTML, JavaScript, image, or media files. Mobile Hub creates a content source storage location (origin)
using an Amazon S3 bucket. The bucket is made accessible to the internet through the Amazon S3 ability
to statically host web content with no web server.

Low latency access to your content is provided to users in all regions by caching your source content
on a global network of edge locations. This Content Distribution network (CDN) is provided through
an Amazon CloudFront distribution which also supports media file streaming (see Amazon CloudFront
streaming).

Hosting and Streaming At a Glance

AWS services and resources configured « Amazon CloudFront - Content Delivery
Network (see Amazon CloudFront)

Concepts | Console | Pricing
o Amazon S3 Bucket (see Amazon S3 Getting

Started Guide <https://aws.amazon.com/
cloudfront/pricing/>"__)

Concepts | Console | Pricing

Mobile Hub-enabled features use Amazon Cognito
for authentication and IAM for authorization. For
more information, see User Sign-in (p. 348).

For more information, see Viewing AWS Resources
Provisioned for this Feature (p. 345).

Configuration options This feature enables the following mobile
backend capabilities:

« Web app content hosting (Internet access for
your content, no web servers required)

« AWS SDK for JavaScript (Call AWS services via
standard scripting)

« Global CDN (Global content distribution
and media streaming) CloudFront offers
several options for regional scope and cost
of your distribution. For more information,

343

https://aws.amazon.com/documentation/s3/
https://aws.amazon.com/cloudfront/
https://aws.amazon.com/cloudfront/streaming/
https://aws.amazon.com/cloudfront/streaming/
http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/
http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/HowCloudFrontWorks.html
https://console.aws.amazon.com/cloudfront/
https://aws.amazon.com/cloudfront/pricing/
https://aws.amazon.com/cloudfront/pricing/
https://aws.amazon.com/cloudfront/pricing/
http://docs.aws.amazon.com/AmazonS3/latest/dev/
https://console.aws.amazon.com/s3/
https://aws.amazon.com/s3/pricing/

AWS Mobile Developer Guide
AWS Mobile Hub Reference

see Configuring the Hosting and Streaming
Feature (p. 344).

Web app demo Sample

o The AWS SDK for Javascript and a custom-
generated configuration file are provisioned to
your bucket.

For more information, see Web App
Support (p. 344).

Quickstart native app demos This feature adds the following to a quickstart
app generated by Mobile Hub:

« View file list in AWS storage, download and
view files, and manage their local cache.

Web App Support

When you enable Hosting and Streaming, Mobile Hub provisions a local copy of the AWS SDK for
JavaScript in the root of your bucket.

Mobile Hub also generates the project configuration files aws-config. js and aws-exports. js,
which contain endpoint constants for each AWS services Mobile Hub configured for your project. aws-
exports. js is provided for integration with ES6 compatible scripting languages like Node.js. Use these
values to make SDK calls to your services from your hosted web app.

Note

Best security practice is to reduce access to an app's resources as much as possible. These
configuration files are publically accessible and contain identifiers for all of your app's AWS
resources. If it suits your design, we recommend you protect your resources by allowing only
authenticated users to access them. You can do this in this project by enabling the Mobile Hub
User Sign-in (p. 348) with the Require sign-in option.

You can also copy the appropriate configuration file into your hybrid native/web mobile app to enable
calling your AWS services from your app using JavaScript.

Configuring the Hosting and Streaming Feature

Topics
« Browsing Your Content (p. 344)
» Managing Your App Assets (p. 345)
« Using a Custom Domain for Your Web App (p. 345)

Browsing Your Content
With Hosting and Streaming enabled, you have several options:

« Launch from Amazon S3: This option browses to the un-cached index.html in the root of your source
bucket.

« Launch from Amazon CloudFront: This option browses to the index.html that is cached on the CDN
edge servers.

Note
Provisioning the edge locations for the distribution can take up to an hour. This link will not
resolve until the distribution finishes propagating in the network.

344

http://docs.aws.amazon.com/sdk-for-javascript/v2/developer-guide/welcome.html
http://docs.aws.amazon.com/sdk-for-javascript/v2/developer-guide/welcome.html

AWS Mobile Developer Guide
AWS Mobile Hub Reference

« Manage files: This option opens the Amazon S3 console to review and manage the contents of your
source bucket. You can also find your bucket in the Amazon S3 console by opening your project in
Mobile Hub and then choosing the Resources icon on the left. The name of the bucket configured for
Hosting and Streaming contains the string hosting.

Managing Your App Assets

You can choose from a variety of ways to manage your web app assets through use of the Amazon S3
console, the AWS Command Line Interface (CLI) or one of the many third party applications available.

Using the Amazon S3 Console

To use the Amazon S3 console to review, upload, move or delete your files stored in your bucket,
navigate to the Amazon S3 console and choose the bucket whose name contains your project name. Your
web app content will reside in the root folder.

Using AWS CLI

AWS CLI allows you to review, upload, move or delete your files stored in your bucket using the
command line.

To install and configure the AWS CLI client, see Getting Set Up with the AWS Command Line Interface.

As an example, the sync command enables transfer of files to and from your local folder (source) and
your bucket (destination).

$ aws s3 sync {source destination} [--options]

The following command syncs all files from your current local folder to the folder in your web app's
bucket defined by path.

$ aws s3 sync . s3://my-web-app-bucket/path

To learn more about using AWS CLI to manage Amazon S3, see Using Amazon S3 with the AWS
Command Line Interface

Using a Custom Domain for Your Web App

To configure your Hosting and Streaming CDN as the destination of your custom domain, see Routing
Traffic to an Amazon CloudFront Web Distribution by Using Your Domain Name.

Viewing AWS Resources Provisioned for this Feature

The following image shows the Mobile HubResources pane displaying elements typically provisioned for
the Hosting and Streaming feature.

345

https://console.aws.amazon.com/s3/home
http://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-set-up.html
http://docs.aws.amazon.com/cli/latest/userguide/cli-s3.html
http://docs.aws.amazon.com/cli/latest/userguide/cli-s3.html
http://docs.aws.amazon.com/Route53/latest/DeveloperGuide/routing-to-cloudfront-distribution.html
http://docs.aws.amazon.com/Route53/latest/DeveloperGuide/routing-to-cloudfront-distribution.html

AWS Mobile Developer Guide
AWS Mobile Hub Reference

Mabile Hulb

charlotte screen capture

Amazon Cognito |dentity Pools

Amazon Cognito provides identifiers and secure access tokens for
your app users based on their authentication state so you can
ensure secure access to your AWS services without embedding
developer credentials in your mobile app. To provide secure access
for your project, the AWS Meobile Hub has provisioned an Amazon
Cognito Identity Pool

charlottescreencaptu_MOBILEHUB_365188661

Amazon CloudFront Distributions

Amazon CloudFront is a content delivery web service that
provides faster access to your application assets stored in the

Manage your resources

Amazon 53 Buckets

Amazon 53 allows you to store files in the cloud organized in
buckets. Depending on which features you have configured, we
have provisioned buckets for User Data Storage and for Hosting
and Streaming.

charlottescreencaptu-hosting-mobilehub-365188661

AWS |dentity and Access Management Roles

AWS Identity and Access Management (IAM) securely controls
access to AWS services and resources. The following 1AM roles
provide Mabile Hub the permissions it needs to administer your
resources and provide your users access to the features you
configure.

cloud, Amazon CloudFront can be configured with your Hosting

and Streaming feature MobileHub_Service_Role

d21gne2binl gq3.cloudfront.net charlottescreencaptu_unauth_MOBILEHUB_365188661

Quickstart App Details
In the Mobile Hub quickstart app, the Hosting and Streaming demo lists a set of image files that can be

downloaded and cached locally and displayed on the device. The user can also delete the local copy of
the image files.

Conversational Bots

Choose the AWS Mobile Hub conversational bots mobile backend service feature to:

« Add voice and text natural language understanding interface to your app

« Use natural language voice and text to interact with your business logic in the cloud
Create a free Mobile Hub project and add the Conversational Bots feature.

Feature Details

The following image shows Conversational Bots using Amazon Lex to add natural language to a mobile
app interface and as an integration point for other services.

346

https://console.aws.amazon.com/mobilehub/home#/

AWS Mobile Developer Guide
AWS Mobile Hub Reference

amazon
Mobile App I-L\:l;azon | AWS webservices
N Lambda
ﬁ Amazon | g * Mobile Amatin €3
= _Cognito IAM Orchestration
> « Natural Amazon SNS
Language
Ao Understanding .:n';lazon
.*- > (as u it 0O Amazon DynamoDB
[- - Amazon Alexa p— y
Text and -|!|Z n = Text
shopping < To SPeech Other AWS Services
Audio \—j
i

AWS Mobile Hub conversational bots bring your mobile app the same natural language understanding
and business logic integration that power the Amazon Alexa and Amazon Shopping voice and text
conversation experiences.

Mobile Hub conversational bots use Amazon Lex, an AWS service for building voice and text
conversational interfaces into applications. Amazon Lex has built-in integration with Lambda.

With conversational bots and Amazon Lex, no deep learning expertise is necessary. Specify the basic
conversation flow in the Amazon Lex console to create a bot. The service manages the dialogue and
dynamically adjusts the responses in the conversation. Using Mobile Hub conversation bots, you can
provision and test bots based on demonstration templates or bots you have created in the Amazon
Lex console. Mobile Hub provides integration instructions and customized components for reusing the
sample app code we generate in your own app.

Conversational Bots At a Glance

AWS services and resources configured « Amazon Lex (see Amazon Lex Developer Guide)

Concepts | Console

Mobile Hub-enabled features use Amazon Cognito
for authentication and IAM for authorization. For
more information, see User Sign-in (p. 348).

Configuration options This feature enables the following mobile
backend capabilities:

« Create and configure conversational bots in
the Amazon Lex service based on provided
demonstration templates or by using the
Amazon Lex console to add your customized
text and/or speech interactions to your app.

« Integrate your app by downloading and reusing
the code of the quickstart app, a package
of native iOS and Android SDKs, plus helper
code and on line guidance, all of which are
dynamically generated to match your Mobile
Hub project.

Quickstart app demos This feature adds the following functionality to a
quickstart app generated by Mobile Hub:

347

http://docs.aws.amazon.com/lex/latest/dg/what-is.html
http://docs.aws.amazon.com/lex/latest/dg/how-it-works.html
https://console.aws.amazon.com/lex/home

AWS Mobile Developer Guide
AWS Mobile Hub Reference

« Enables user to interact with a conversational
bot that interacts with Amazon Lex.

User Sign-in

Choose the AWS Mobile Hub User Sign-in mobile backend feature to:

o Add AWS user authentication and secure identity access management to your mobile app.

Note: Secure unauthenticated access to AWS resources is available to all Mobile Hub projects with or without the User Sign-in feature.

« Enable your users to sign-in to access AWS resources with existing credentials from identity providers

like Facebook, Google, Microsoft Active Directory Federation Services or your own custom user
directory.

Create a free Mobile Hub project and add the User Sign-in feature.

Feature Details

The following image shows a resource access policy being enforced for an unauthenticated user.

] .;\.I_ I _
Mobile App FJAmazon Cognito ? 1AM

~\ PUBLIC

A
|
— - assets, "
]
— Autherization | FEsDUrcEs B 1
. services 1
- - e e e e e
- L Identity L = %
(’ Unauthenticated ™+ Pool B { UNAUTH [ynauTH
User Identity .~ - - ROLE |poLicy — amazon
- - Y
e webservices
Usar %
{ Identity |
3
\ ’ e
M‘"‘-*-:-_‘—-'-"'“I o HSE »
\) PRIVATE |
- assets, |
| resources & |
! services |
N e e e e o /
The following image shows a resource access policy being enforced for an authenticated user.
|dentity Providers
T TCIITTTITIITTN
222 I =) (Google)y) B
| ACTIVE | : ‘-_' R : E'A'“a"’“ Cognito 1AM ™ __
| DIRECTORY |- A F ———— 1 Ho \
R \I J’ o | puBuC !
| T 1] 11 Email & Phone 1 1 o : assets, resources :
ISHIEEOLE_THI“ — P, Federation || Amazon Cognito Your| | Authorization ! & services !
v ! ! Identity ~— N .
| OTHER |4~ Pool 4 ‘
I oenmiTY | E— AUTH 4
I sysTEMS | 47 Usar N POLICY amazon
M=~ \dentity N webservices
oY
| ‘ PRIVATE

. assets,
1 resources &
1 services

,~ " Authenticated
‘o User Identity LY

i SRR
Mobile App

348

https://console.aws.amazon.com/mobilehub/home#/

AWS Mobile Developer Guide
AWS Mobile Hub Reference

This feature enables you to configure how your users gain access to AWS resources and services used

by your app, either with no sign in process or through authentication provided by one or more identity
providers. In both cases, AWS identity creation and credentials are provided by Amazon Cognito Identity,
and access authorization comes through AWS Identity and Access Management (IAM).

When you create a project, Mobile Hub provisions the AWS identity, user role, and access policy
configuration required to allow all users access to unrestricted resources. When you add the User Sign-
in feature to your app, you are able to restrict access to allow only those who sign in with credentials
validated by an identity provider to use protected resources. Through Amazon Cognito Identity, your app
user obtains AWS credentials to directly access the AWS services that you enabled and configured for
your Mobile Hub project. Both authenticated and unauthenticated users are granted temporary, limited-
privilege credentials with the same level of security enforcement.

Amazon Cognito can federate validated user identities from multiple identity providers to a single AWS
identity. Mobile Hub helps you integrate identity providers into your mobile app so that users can sign
in using their existing credentials from Facebook, Google, and your own identity system. You can also
create and configure your own email- and password-based user directory using Amazon Cognito Your
User Pools.

User Sign-in Feature At a Glance

AWS services and resources configured « Amazon Cognito

Concepts | Console | Pricing
« Amazon Cognito Identity Pool

(see Using Federated Identities)
« Amazon Cognito Your User Pools

(see Creating and Managing User Pools)
« Amazon Cognito SAML Federation

(see Overview of Configuring SAML 2.0-Based
Federation)

« IAM role and security policies (see Control
Access to Mobile Hub Projects (p. 314))

Concepts | Console | Pricing

For more information, see Viewing AWS Resources
Provisioned for this Feature (p. 352).

Configuration options This feature enables the following mobile
backend capabilities:

Sign-in Providers (users gain greater access when
they sign in)

« via Google authentication (see Set Up Your
Backend (p. 20))

« via Facebook authentication (see Set Up Your
Backend (p. 20))

« via Email and Password authentication (see
User Sign-in Providers (p. 350))

« via SAML Federation authentication (see User
Sign-in Providers (p. 350))

349

https://aws.amazon.com/cognito/dev-resources/
https://aws.amazon.com/iam/details/
http://docs.aws.amazon.com/cognito/latest/developerguide/concepts.html
https://console.aws.amazon.com/cognito/federated/
https://aws.amazon.com/cognito/pricing/
http://docs.aws.amazon.com/cognito/latest/developerguide/cognito-identity.html
http://docs.aws.amazon.com/cognito/latest/developerguide//cognito-user-identity-pools.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_providers_saml.html#CreatingSAML-configuring-IdP
http://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_providers_saml.html#CreatingSAML-configuring-IdP
http://docs.aws.amazon.com/IAM/latest/UserGuide/
https://console.aws.amazon.com/iam/home#roles
http://docs.aws.amazon.com/IAM/latest/UserGuide/introduction.html#intro-features

AWS Mobile Developer Guide
AWS Mobile Hub Reference

Required Sign-in (authenticated access)

Optional Sign-in (users gain greater access
when they sign in) For more information, see
Configuring User Sign-in (p. 350)

Quickstart demo features This feature adds the following to a quickstart
app generated by Mobile Hub:

« Unauthenticated access (if allowed by your
app's configuration), displaying the ID that AWS
assigns to the app instance's device.

« Sign-in screen that authenticates users using
the selected method: Facebook, Google, or
Email and Password (your own user pool).

« With Optional Sign-in and Require Sign-in, the
app demonstrates an access barrier to protected
folders for unauthenticated users.

Configuring User Sign-in
The following options are available for configuring your users' sign-in experience.
User Sign-in Providers

Facebook

« To enable Facebook user authentication, register your application with Facebook.

If you already have a registered Facebook app, copy the App ID from the Facebook Developers App
Dashboard. Paste the ID into the Facebook App ID field and choose Save Changes.

If you do not have a Facebook App ID yet, you'll need to create one before you can integrate Facebook
in your mobile app. The Facebook Developers portal takes you through the process of setting up your
Facebook application.

For full instructions on integrating your application with Facebook, see Setting Up Facebook
Authentication (p. 20).

Google

« To authenticate your users through Google, fully integrate your sample app with Google+ Sign-in.

If you already have a registered Google Console project with the Google+ API, a web application
OAuthClient and a client ID for the platform of your choice set up, then copy and paste the Google
Web App Client ID and client ID(s) from the Google Developers Console into those fields and choose
Save Changes.

Regardless of the platform you choose (Android or iOS), you'll need to at least create the following.
« A Google Console project with the Google+ API enabled (used for Google Sign-in)

« A web application OAuth client ID

« AniOS and/or Android client ID, depending on which platform you are supporting

For full instructions on integrating your application with Google+, see Setting Up Google
Authentication (p. 161).

350

AWS Mobile Developer Guide
AWS Mobile Hub Reference

Email and Password

« Choose Email and Password sign-in when you want to create your own AWS-managed user directory
and sign-in process for your app's users. Configure the characteristics of their sign-in experience by:

« Selecting user login options (email, username, and/or phone number)

« Enabling multi-factor authentication (none, required, optional) which adds delivery of an entry code
via text message to a user's phone, and a prompt to enter that code along with the other factor to
sign-in

« Selecting password character requirements (minimum length, upper/lower cases, numbers or special
characters allowed).

SAML Federation

« SAML Federation enables users with credentials in your existing identity store to sign in to your mobile
app using their familiar username and password. A user signs into to your identity provider (IdP) which
is configured to return a validating SAML assertion. Your app then uses Amazon Cognito Federated
Identities to exchange the SAML assertion for typical temporary, limited privilege credentials to access
your AWS backend services.

SAML 2.0 (Security Assertion Markup Language 2.0) is an open standard used by many IdPs, including
Microsoft Active Directory Federation Service and Shibboleth. Your IdP must be SAML 2.0 compatible
to use this Mobile Hub option. To establish federation between AWS and your IdP the two systems
must exchange SAML federation metadata. AWS federation metadata can be found at https://
signin.aws.amazon.com/static/saml-metadata.xml. This xml file demonstrates the form that your
IdP's metadata should take. For more information on SAML federation metadata for your IdP, see
Integrating Third-Party SAML Solution Providers with AWS.

To implement this exchange:

1. View your IdP's documentation to understand how to use the AWS federation metadata file to
register AWS as a service provider.

2. Ensure that your Mobile Hub project is configured to use Email & Password sign-in to create an
Amazon Cognito User Pool.

3. Configure your IdP as an Identity Provider for your user pool using the steps on Creating SAML
Identity Providers for Your User Pool.

To learn more about how AWS supports SAML federation, see Overview of Configuring SAML 2.0-
Based Federation.

User Sign-in Requirement
Sign-in is optional

« Users have the option to sign in (authenticate) with your chosen sign-in identity provider(s) or users
can skip sign-in (unauthenticated). Your app receives temporary, limited privilege access credentials
from Amazon Cognito Identity as either an authenticated user or an unauthenticated guest user so
that your app can access your AWS services securely.

Sign-in is required

« Users are required to sign in with one of your chosen sign-in providers. Your app receives temporary,
limited privilege access credentials from Amazon Cognito Identity as an authenticated user so that
your app can access your AWS services securely.

351

https://signin.aws.amazon.com/static/saml-metadata.xml
https://signin.aws.amazon.com/static/saml-metadata.xml
http://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_providers_saml_3rd-party.html
http://docs.aws.amazon.com/cognito/latest/developerguide/cognito-user-pools-saml-idp.html
http://docs.aws.amazon.com/cognito/latest/developerguide/cognito-user-pools-saml-idp.html
http://docs.aws.amazon.com/cognito/latest/developerguide/cognito-identity.html
http://docs.aws.amazon.com/cognito/latest/developerguide/cognito-identity.html

AWS Mobile Developer Guide
AWS Mobile Hub Reference

Note

If user sign-in is not required, unauthenticated users can access to data in your database tables
and files in your storage buckets, unless those resources are explicitly restricted through another
mechanism.

User Sign-in and AWS Identity and Access Management (IAM)
When your mobile app is saved, Mobile Hub creates an Amazon Cognito identity pool and a new IAM
role. These are used to generate temporary AWS credentials for the quickstart app users to access your

AWS resources. The AWS IAM role security policies are updated based on the sign-in features enabled.

At this point, your mobile project is set up for users to sign in. Each chosen identity provider has been
added to the login screen of the quickstart app.

For more information, see Control Access to Mobile Hub Projects (p. 314).
Viewing AWS Resources Provisioned for this Feature

The following image shows the Mobile HubResources pane displaying elements typically provisioned for
the User Sign-in feature.

Mobile Hub Cloud Logic APls

Ma nage your resources

Ej Amazon Cognito Identity Pools El Amazon Cognito User Pools

Amazan Cognito provides identifiers and s sers based on their Amazon COGNIto Provides 3 User cirectory to allow YOur USEers to Sign-up and $ign-in to your
authentication state 50 you Can ensure sec < ithout embedding apphication. User pools scale to hundreds of millions of users and provide simple, secure, and kow-cost
developer credentials in your mobile app. To provide secure access for your project, the AWS Mobile options for you as a developer.

Hub has provisioned an Amazon Cognito Identity Pool

cloudlogicapis_userposl MOBILEHUB_1421569281 &
cloudlogicapis_MOBILEHUB_1421569281

500
Araiyses
IP AWS Lambda Functions
55
1 . Amazon 53 Buckets Amazon Lambida runs yeur code in the claud so you £an execute backend logic for your app. Each
[escurces function that you have created i listed below.
Amazon 53 allows you to store files in the cloud organized in buckets. Depending on which features
you have configured, we have provisioned buckets for User Data Storage and for App Content MyCloudLogicAPi-itemsHandler-mobilehub-1421569281
Deiivery.

cloud|ogicapis-deployments-mobilehub- 1421569281 =

? AWS Identity and Access Management Roles
" WS Identity and Access Management (IAM) securely eontrols access to AWS services and

:1: AP Gateway resources. The following 1AM roles provide Mobile Hub the permissions it needs to administer your
resources and provide your users access to the features you configure

AP| Gateway configures APIs for your cloud logic. The APIs you have created are listed below.
MobileHub_Service_Rols o

MyCloudLogicAPI-MobileHub-1421569281
cloudiogicapis_smsverification MOBILEHUB_1421569281 =
cloudlogicapis_auth_MOBILEMUB_1421569281

MOBILEHUB-1421569281-Developme-lambdaexecutionrole-1 ADDCIZAMSESLN
§ samL providers
A SAML 2.0 identity provider is an entity in |AM that describes an identity provider (IdP) service. You
use a SAML identity provider when you want to establish trust between an SAML-compatible IdP
such as Shibboleth or Active Directory Federation Services so that users in your organization can
access AWS resources

arm:awssiam:367278834079:saml-providerftest

Quickstart App Details

In the Mobile Hub quickstart app, the User Sign-in demo enables users to use features that access AWS
resources without authentication or by signing in to the app via identity providers including Facebook,
Google, SAML Federation or Email and Password.

When you add User Sign-in to your project with the Optional Sign-in option, choosing the app's
quickstart sign-in demo returns and displays the user's Amazon Cognito Identity Pool ID. This identifier is
associated with the app instance's device currently accessing AWS resources.

When you add User Sign-in to your project with Required Sign-in, choosing the app's quickstart sign-in
demo displays a sign-in experience branded to match the identity provider(s) configured in the project.

352

AWS Mobile Developer Guide
AWS Mobile Hub Reference

Signing in to the demo authenticates the user in the selected identity provider service and returns and
displays the Amazon Cognito Identity Pool ID identifier of the user.

User File Storage

Choose AWS Mobile Hub User File Storage to:

« Add cloud storage of user files, profile data, and app state to your mobile app

« Use fine-grained control of access to files and data, implementing four common patterns of
permissions policy

Looking for Amazon Cognito Sync? Amazon Cognito Sync has been deprecated. For
real time data sync between devices, with built-in
offline capabilities, see AWS AppSync.

Create a free Mobile Hub project and add the User File Storage feature.

Feature Details

The Mobile Hub User File Storage feature, creates and configures four folders for each user, inside an
Amazon Simple Storage Service (Amazon S3) bucket belonging to the app.

Best practice for app security is to allow the minimum access to your buckets that will support your

app design. Each of the four folders provisioned has a policy illustrating different permissions choices
attached. In addition, Mobile Hub provides the option to restrict access to your app to only authenticated
users using the User Sign-in (p. 348) feature.

Note: If you do not make the User Sign-in (p. 348) feature Required then, where not blocked by a
folder or bucket access policy, unauthenticated users will have access to read and/or write data.

The following table shows the details of permissions policies that are provisioned for each folder type.

Folder name Owner permissions Everyone else permissions
Public Read/Write Read/Write

Private Read/Write None

Protected Read/Write Read Only

Uploads Write Only Write Only

The following image shows IAM policy being applied to control file access in a Protected folder. The
policy grants read/write permissions for the user who created the folder, and read only permissions for
everyone else.

353

https://aws.amazon.com/appsync/
https://console.aws.amazon.com/mobilehub/home#/

AWS Mobile Developer Guide
AWS Mobile Hub Reference

Mobile App

rkl Amazon
w- Cognito

L

-

Role

¢~ Unauthenticated
- _Role_

Authorization \
, H *Amazon s3

Y
Bprotected
A

User files

Yes| Read /Write

-
3

-

Read Only

—

e o = = ————— = = —————

The User File Storage feature enables you to store user files such as photos or documents in the cloud,
and it also allows you to save user profile data in key/value pairs, such as app settings or game state.
When you select this feature, an Amazon S3 bucket is created as the place your app will store user files.

User File Storage At a Glance

AWS services and resources configured

Configuration options

Quickstart demo features

« Amazon S3 bucket (see Amazon S3 Getting
Started Guide)

Concepts | Console | Pricing

Mobile Hub-enabled features use Amazon Cognito
for authentication and IAM for authorization. For
more information, see User Sign-in (p. 348). For
more information, see Viewing AWS Resources
Provisioned for this Feature (p. 355).

This feature enables the following configuration
options mobile backend capabilities:

« Store user files and app data using Amazon S3.
When you enable User File Storage four folders
are provisioned, each with a distinct access
policy configuration:

e private - Each mobile app user can create,
read, update, and delete their own files in
this folder. No other app users can access this
folder.

« protected - Each mobile app user can
create, read, update, and delete their own
files in this folder. In addition, any app user
can read any other app user's files in this
folder.

e public ? Any app user can create, read,
update, and delete files in this folder.

This feature adds the following to a quickstart
app generated by Mobile Hub:

« File explorer for the app's S3 bucket allows the
user to:

354

http://docs.aws.amazon.com/AmazonS3/latest/dev/Introduction.html
http://docs.aws.amazon.com/AmazonS3/latest/gsg/
http://docs.aws.amazon.com/AmazonS3/latest/gsg/
http://docs.aws.amazon.com/AmazonS3/latest/dev/
https://console.aws.amazon.com/s3/
https://aws.amazon.com/s3/pricing/

AWS Mobile Developer Guide
AWS Mobile Hub Reference

» Upload and view files in any Public folder.

« View and download files in a Private folder
that the user created.

« View and download files in a Protected folder
anyone created and upload files to that folder
if the user created it.

« Upload files to any Uploads folder. User
setting of choice of color theme can be
persisted to and retrieves from the cloud.

Viewing AWS Resources Provisioned for this Feature

The following image shows the Mobile HubResources pane displaying elements typically provisioned for
the User File Storage feature.

Maobile Hub userdata-storage-sample

Manage your resources I
oy
I s] Amazon Cognito Identity Pools Amazon 53 Buckets
Budd Y
_ amarn Cognito pravides identifiers and secwé access tokens for Amazon 53 allows you to store files in the cloud onganized in
{57 =4 wour app users based on their authentication state so you can buckets. Depending on which features you have configured, we
- N ensure secure access o your AWS services without embedding hawe provisioned buckets for User Data Storage and for App
deweloper credentials in your mobile app. To provide secure acoess Content Delivery,
for your project, the AVWS Mobile Hub has provisioned an Amazon
" l'-'l Cognito Identity Poo userdatastoragesampl-userfiles-mabilehub-14 79840764 2
= : .

s userdatastoragesampl_MOBILEHUB_14798340764 &

? AWS ldentity and Access Management Roles
AWS Identity and Access Management (LAM) securely controls
access o AWS services and resources. The following 1AM roles
provide Maobile Hub the permissions it needs to administer your
resourceés and provide your users access to the features you
configure

MobileHub_Service_Role

userdatastaragesampl_unauth_MOBILEHUB_14Ta840764 =8

Mobile Hub Project Service Region Hosting

The configuration settings of your Mobile Hub project are stored in the AWS US East (Virginia) region.

The AWS services you configure are hosted in the region you select for your project, if they are available
in that region. If services are not available in that region, then Mobile hub will host the services in
another region.

For more details about regional endpoints, see AWS Regions and Endpoints.

To understand where services for your project will be hosted, find the region for your project in the
following tables.

Select your project's region:
« US East (Virginia) (p. 356)

355

http://docs.aws.amazon.com/general/latest/gr/rande.html

AWS Mobile Developer Guide
AWS Mobile Hub Reference

« US East (Ohio) (p. 356)

« US West (California) (p. 357)

« US West (Oregon) (p. 357)

o EU West (Ireland) (p. 357)

« EU West (London) (p. 358)

o EU (Frankfurt) (p. 358)

« Asia Pacific (Tokyo) (p. 358)

« Asia Pacific (Seoul) (p. 359)

« Asia Pacific (Mumbai) (p. 359)

« Asia Pacific (Singapore) (p. 360)
« Asia Pacific (Sydney) (p. 360)

« South America (S30 Paulo) (p. 360)

US East (Virginia)

Hosting for these services:
Amazon APl Gateway (Cloud Logic)

Amazon Cognito (User Sign-in / User File
Storage)

Amazon DynamoDB (NoSQL Database)
Amazon Lex (Conversational Bots)
Amazon Pinpoint (Messaging and Analytics)

Amazon S3 (User File Storage / Messaging and
Hosting)

AWS Lambda (Cloud Logic)

US East (Ohio)

Hosting for these services:
Amazon API Gateway (Cloud Logic)

Amazon Cognito (User Sign-in / User File
Storage)

Amazon DynamoDB (NoSQL Database)
Amazon Lex (Conversational Bots)
Amazon Pinpoint (Messaging and Analytics)

Amazon S3 (User File Storage / Messaging and
Hosting)

AWS Lambda (Cloud Logic)

Is located in:
US East (Virginia)

US East (Virginia)

US East (Virginia)
US East (Virginia)
US East (Virginia)

US East (Virginia)

US East (Virginia)

Is located in:
US East (Ohio)
US East (Ohio)

US East (Ohio)
US East (Virginia)
US East (Virginia)
US East (Ohio)

US East (Ohio)

356

AWS Mobile Developer Guide
AWS Mobile Hub Reference

US West (California)

Hosting for these services:
Amazon API Gateway (Cloud Logic)

Amazon Cognito (User Sign-in / User File
Storage)

Amazon DynamoDB (NoSQL Database)
Amazon Lex (Conversational Bots)
Amazon Pinpoint (Messaging and Analytics)

Amazon S3 (User File Storage / Messaging and
Hosting)

AWS Lambda (Cloud Logic)

US West (Oregon)

Hosting for these services:
Amazon APl Gateway (Cloud Logic)

Amazon Cognito (User Sign-in / User File
Storage)

Amazon DynamoDB (NoSQL Database)
Amazon Lex (Conversational Bots)
Amazon Pinpoint (Messaging and Analytics)

Amazon S3 (User File Storage / Messaging and
Hosting)

AWS Lambda (Cloud Logic)

EU West (Ireland)

Hosting for these services:
Amazon APl Gateway (Cloud Logic)

Amazon Cognito (User Sign-in / User File
Storage)

Amazon DynamoDB (NoSQL Database)
Amazon Lex (Conversational Bots)
Amazon Pinpoint (Messaging and Analytics)

Amazon S3 (User File Storage / Messaging and
Hosting)

Is located in:
US West (California)

US West (Oregon)

US West (California)
US East (Virginia)
US East (Virginia)

US West (California)

US West (California)

Is located in:
US West (Oregon)

US West (Oregon)

US West (Oregon)
US East (Virginia)
US East (Virginia)

US West (Oregon)

US West (Oregon)

Is located in:
EU West (Ireland)

EU West (Ireland)

EU West (Ireland)
US East (Virginia)
US East (Virginia)

EU West (Ireland)

357

AWS Mobile Developer Guide
AWS Mobile Hub Reference

Hosting for these services:

AWS Lambda (Cloud Logic)

EU West (London)

Hosting for these services:
Amazon API Gateway (Cloud Logic)

Amazon Cognito (User Sign-in / User File
Storage)

Amazon DynamoDB (NoSQL Database)
Amazon Lex (Conversational Bots)
Amazon Pinpoint (Messaging and Analytics)

Amazon S3 (User File Storage / Messaging and
Hosting)

AWS Lambda (Cloud Logic)

EU (Frankfurt)

Hosting for these services:
Amazon API Gateway (Cloud Logic)

Amazon Cognito (User Sign-in / User File
Storage)

Amazon DynamoDB (NoSQL Database)
Amazon Lex (Conversational Bots)
Amazon Pinpoint (Messaging and Analytics)

Amazon S3 (User File Storage / Messaging and
Hosting)

AWS Lambda (Cloud Logic)

Asia Pacific (Tokyo)

Hosting for these services:
Amazon APl Gateway (Cloud Logic)

Amazon Cognito (User Sign-in / User File
Storage)

Amazon DynamoDB (NoSQL Database)

Is located in:

EU West (Ireland)

Is located in:
EU West (London)

EU West (London)

EU West (London)
US East (Virginia)
US East (Virginia)

EU West (London)

EU West (London)

Is located in:
EU (Frankfurt)

EU (Frankfurt)

EU (Frankfurt)
US East (Virginia)
US East (Virginia)

EU (Frankfurt)

EU (Frankfurt)

Is located in:
Asia Pacific (Tokyo)

Asia Pacific (Tokyo)

Asia Pacific (Tokyo)

358

AWS Mobile Developer Guide
AWS Mobile Hub Reference

Hosting for these services:
Amazon Lex (Conversational Bots)
Amazon Pinpoint (Messaging and Analytics)

Amazon S3 (User File Storage / Messaging and
Hosting)

AWS Lambda (Cloud Logic)

Asia Pacific (Seoul)

Hosting for these services:
Amazon APl Gateway (Cloud Logic)

Amazon Cognito (User Sign-in / User File
Storage)

Amazon DynamoDB (NoSQL Database)
Amazon Lex (Conversational Bots)
Amazon Pinpoint (Messaging and Analytics)

Amazon S3 (User File Storage / Messaging and
Hosting)

AWS Lambda (Cloud Logic)

Asia Pacific (Mumbai)

Hosting for these services:
Amazon APl Gateway (Cloud Logic)

Amazon Cognito (User Sign-in / User File
Storage)

Amazon DynamoDB (NoSQL Database)
Amazon Lex (Conversational Bots)
Amazon Pinpoint (Messaging and Analytics)

Amazon S3 (User File Storage / Messaging and
Hosting)

AWS Lambda (Cloud Logic)

Is located in:
US East (Virginia)
US East (Virginia)

Asia Pacific (Tokyo)

Asia Pacific (Tokyo)

Is located in:
Asia Pacific (Seoul)

Asia Pacific (Seoul)

Asia Pacific (Seoul)
US East (Virginia)
US East (Virginia)

Asia Pacific (Seoul)

Asia Pacific (Seoul)

Is located in:
Asia Pacific (Mumbai)

Asia Pacific (Mumbai)

Asia Pacific (Mumbai)
US East (Virginia)
US East (Virginia)

Asia Pacific (Mumbai)

Asia Pacific (Mumbai)

359

AWS Mobile Developer Guide
AWS Mobile Hub Reference

Asia Pacific (Singapore)

Hosting for these services:
Amazon API Gateway (Cloud Logic)

Amazon Cognito (User Sign-in / User File
Storage)

Amazon DynamoDB (NoSQL Database)
Amazon Lex (Conversational Bots)
Amazon Pinpoint (Messaging and Analytics)

Amazon S3 (User File Storage / Messaging and
Hosting)

AWS Lambda (Cloud Logic)

Asia Pacific (Sydney)

Hosting for these services:
Amazon APl Gateway (Cloud Logic)

Amazon Cognito (User Sign-in / User File
Storage)

Amazon DynamoDB (NoSQL Database)
Amazon Lex (Conversational Bots)
Amazon Pinpoint (Messaging and Analytics)

Amazon S3 (User File Storage / Messaging and
Hosting)

AWS Lambda (Cloud Logic)

South America (Sao Paulo)

Hosting for these services:
Amazon APl Gateway (Cloud Logic)

Amazon Cognito (User Sign-in / User File
Storage)

Amazon DynamoDB (NoSQL Database)
Amazon Lex (Conversational Bots)
Amazon Pinpoint (Messaging and Analytics)

Amazon S3 (User File Storage / Messaging and
Hosting)

Is located in:
Asia Pacific (Singapore)

Asia Pacific (Singapore)

Asia Pacific (Singapore)
US East (Virginia)
US East (Virginia)

Asia Pacific (Singapore)

Asia Pacific (Singapore)

Is located in:
Asia Pacific (Sydney)
Asia Pacific (Sydney)

Asia Pacific (Sydney)
US East (Virginia)
US East (Virginia)

Asia Pacific (Sydney)

Asia Pacific (Sydney)

Is located in:
South America (Sdo Paulo)

US East (Virginia)

South America (Sao Paulo)
US East (Virginia)
US East (Virginia)

US East (Virginia)

360

AWS Mobile Developer Guide
AWS Mobile Hub Reference

Hosting for these services: Is located in:

AWS Lambda (Cloud Logic) South America (Sao Paulo)

Mobile Hub Project Troubleshooting

The following sections describe issues you might encounter when setting up, importing or exporting
Mobile Hub projects, and their remedies.
Topics
o Cannot Import an API (p. 361)
« Cannot Import a NoSQL Table (p. 361)
« Cannot Import Multiple NoSQL Tables (p. 362)
o Cannot Import Push Credentials (p. 362)
« Build Artifacts Can't be Found (p. 363)
« Unable to Configure S3 Bucket During (p. 364)
o Administrator Required Error During Setup (p. 364)
« Account Setup Incomplete (p. 365)
« File Too Large to Import (p. 365)

Cannot Import an API

Error Message

e Project owner does not own existing API : arn:aws:execute-api:us-
east-1:012345678901:abcdefghij.

(where the API identifier arn:aws:execute-api:us-east-1:012345678901:abcdefghij is specific to the
project being imported)

Description

« This message means that the API with the ID shown cannot be imported because it does not exist in
the current AWS account. This occurs when the APIs in the original project were created outside of the
Mobile Hub Cloud Logic feature and then imported.

Remedy

« To remedy this condition, take the following steps.

1. Modify the YAML of the project definition you are importing by removing the sections under the
features:components node that begin with the name of an API that was imported into the
original project's Cloud Logic feature.

2. Save and import the project definition.

3. Enable the Mobile Hub Cloud Logic feature in your imported project and recreate the APl and its
handler.

Cannot Import a NoSQL Table

Error Message

361

AWS Mobile Developer Guide
AWS Mobile Hub Reference

« There is already an existing DynamoDB table called 'someprojectname-mobilehub-012345678-
TableName' in your account. Please choose a different name or remove the existing table and retry
your request.

(where the table name someprojectname-mobilehub-012345678-TableName is specific to the project
being imported)
Description

« This message occurs when you import a project containing the NoSQL Database Feature. It indicates
that the Amazon DynamoDB table in the project configuration already exists. This can occur when a
YAML tablename value was edited in the project definition file and there is more than one attempt to
import it into the same account.

Remedy

« To remedy this condition, take the following steps
1. Modify any tablename values to remove the conflict.
2. Save and import the project definition.

3. Adjust the code of the imported app where it references the old tablename value.

Cannot Import Multiple NoSQL Tables

Error Message

» Project file(s) cannot be decoded. They may contain data that was encrypted by a different account.
Failed to decode push feature. Failed to decode credential attribute.

Description

« This message occurs when you import Push Notifications messaging service credentials or Amazon
SNS topic identifiers for features that are not associated with your AWS account.

Remedy

« To remedy this condition, take the following steps
1. Modify the YAML of the project definition you are importing by removing table definition sections.
2. Save and import the project definition.

3. Use the table definitions you removed to manually create those tables using the Mobile Hub NoSQL
Database feature.

Cannot Import Push Credentials

Error Message

« Project file(s) cannot be decoded. They may contain data that was encrypted by a different account.
Failed to decode push feature. Failed to decode credential attribute.

Description

« This message occurs when you import Push Notifications messaging service credentials or Amazon
SNS topic identifiers for features that are not associated with your AWS account.

362

AWS Mobile Developer Guide
AWS Mobile Hub Reference

Remedy

« To remedy this condition, take the following steps
1. Modify the YAML of the project definition you are importing by removing the push: node.
2. Save and import the project definition.

3. Enable the Mobile Hub Push Notifications or User Engagement feature using your own messaging
service credentials and topics.

Build Artifacts Can't be Found

Error Message

« Unable to find build artifact uploads/exported-project-definition.zip in Amazon S3 bucket archive-
deployments-mobilehub-0123456789 for project-name.

where exported-project-definition, the numerical portion of the Amazon S3 bucket identifier, and the project-name are specific to the
project being imported)

Description

« This message occurs when a project import fails because Mobile Hub can't find the file of a Cloud Logic
API handler function (Lambda) that is specified in the .yml project definition file.

Remedy

« To remedy this condition, take the following steps

The remedy for this condition is to make the location of the Lambda file(s) match the path specified in
the project definition YAML.

The error occurs if, for any reason, the path described in the codeFilename: key in the YAML

does not match the actual location of the Lambda function file relative to the root of the .. .-
deployments-... Amazon S3 bucket that Mobile Hub deploys when Cloud Logic is enabled. For
more information, see Importing APl Handlers for Cloud Logic APIs (p. 329).

--- !com.amazonaws.mobilehub.v0.Project

features:
cloudlogic: !com.amazonaws.mobilehub.v0.CloudLogic
components:
api-name: !com.amazonaws.mobilehub.v0.API
attributes:
name: api-name
requires-signin: true
sdk-generation-stage-name: Development
paths:

/items: !com.amazonaws.mobilehub.v0.Function
codeFilename: uploads/lambda-archive.zip
description: "Handler for calls to resource path : /items"
enableCORS: true
handler: lambda.handler
memorySize: "128"
name: handler-name
runtime: nodejsé6.10
timeout: "3"
"/items/{proxy+}": !com.amazonaws.mobilehub.v0.Function
codeFilename: uploads/lambda-archive.zip
description: "Handler for calls to resource path : /items/{proxy+}"
enableCORS: true

363

AWS Mobile Developer Guide
AWS Mobile Hub Reference

handler: lambda.handler
memorySize: "128"

name: handler-name
runtime: nodejsé6.10
timeout: "3"

Potential reasons include:
« Atypo in the path value of the uploads: fileName key in the YAML.

« A path error caused during manual modifications to a project definition .zip file.

To make a project's Cloud Logic API handler Lambda functions available for import, an author

must unzip, modify, and rezip the exported project file. If the uncompressed project definition

file folder is rezipped, rather than zipping the contents within that folder, the path is changed so
that the original archive is inside of a new archive folder. If the path to an original export named
your-project.zip was lambda-archive.zip, then the path would change to your-project/
lambda-archive.zip. You can remedy this by modifying the uploads: fileName value or rezipping
the project export file contents without the including the folder.

« A missing Lambda file in a project definition file containing a YAML file that specifies a path for
uploads: fileName.

Unable to Configure S3 Bucket During

Error Message

« It looks like there was a problem creating or configuring your S3 bucket.

Description

« Mobile Hub was unable to create a S3 bucket for your project's deployment artifacts during Mobile
Hub project import.

Remedy

« To remedy this condition, try the following steps

Check that you are not at maximum bucket capacity using the Amazon S3 console.

Administrator Required Error During Setup

Error Message

« It looks like you do not have permission for this operation.

Description

« The user does not have permission to create the required Mobile Hub Service Role during configuration
of a Mobile Hub project.

Remedy

« To remedy this condition, try the following steps

364

https://console.aws.amazon.com/s3/

AWS Mobile Developer Guide
AWS Mobile Hub Reference

Contact an administrator for your AWS account and ask them to create the service role at the
following location: https://console.aws.amazon.com/mobilehub/home#/activaterole/.

Account Setup Incomplete

Error Message

« It looks like your AWS account is not fully set up.

Description

« This error can occur for a range of reasons during Mobile Hub project configuration.

Remedy

« To remedy this condition, try the following steps

« Sign out of the AWS console and lose down all browser windows. Then try to log in to the
<problematic>"AWS Mobile console <>"__</problematic>
and attempt the operation that initially caused the er.

« If the issue persists, post to the
<problematic>"AWS Mobile Development forum<https://forums.aws.amazon.com/forum.jspa?
forumID=88>"__</problematic>
for support.

File Too Large to Import

Error Message

« The project file is too large. The max file size is 10 MB.

Description

« This message occurs when you attempt to import a project definition file that is larger than T0MB.

Remedy

» Reduce the size of the project export file. Project exporters may want to deliver large file payloads
outside of their project definition files, along with providing instructions for importers about how to
use AWS consoles to incorporate those accompanying files.

365

https://console.aws.amazon.com/mobilehub/home#/activaterole/

AWS Mobile Developer Guide
Get Started

AWS Amplify Library for Web

AWS Amplify is an open source JavaScript library for frontend and mobile developers building cloud-
enabled applications. The library is a declarative interface across different categories of operations in
order to make common tasks easier to add into your application. The default implementation works with
Amazon Web Services (AWS) resources but is designed to be open and pluggable for usage with other
cloud services that wish to provide an implementation or custom backends.

The AWS Mobile CLI, built on AWS Mobile Hub, provides a command line interface for frontend
JavaScript developers to seamlessly enable and configure AWS services into their apps. With minimal
configuration, you can start using all of the functionality provided by the AWS Mobile Hub from your
favorite terminal application.

Topics
« Get Started (p. 366)
o AWS Mobile Hub Features (p. 385)

Get Started

Overview

The AWS Mobile CLI provides a command line experience that allows frontend JavaScript developers to
quickly create and integrate AWS backend resources into their mobile apps.

Prerequisites

1. Sign up for the AWS Free Tier.
2. Install Node.js with NPM.
3. Install AWS Mobile CLI

npm install -g awsmobile-cli

4. Configure the CLI with your AWS credentials

To setup permissions for the toolchain used by the CLI, run:

awsmobile configure

If prompted for credentials, follow the steps provided by the CLI. For more information, see provide
IAM credentials to AWS Mobile CLI (p. 395).

Set Up Your Backend

Need to create a quick sample React app? See Create a React App.

366

https://aws.github.io/aws-amplify/
https://aws.amazon.com/free/
https://nodejs.org/en/download/
https://reactjs.org/blog/2016/07/22/create-apps-with-no-configuration.html

AWS Mobile Developer Guide
Connect to Your Backend

To configure backend features for your app

1. In the root folder of your app, run:

awsmobile init

The init command creates a backend project for your app. By default, analytics and web hosting
are enabled in your backend and this configuration is automatically pulled into your app when you
initialize.

2. When prompted, provide the source directory for your project. The CLI will generate aws-
exports. js in this location. This file contains the configuration and endpoint metadata used to link
your frontend to your backend services.

? Where is your project's source directory: src

3. Respond to further prompts with the following values.

Where is your project's distribution directory to store build artifacts: build

What is your project's build command: npm run-script build

What is your project's start command for local test run: npm run-script start

What awsmobile project name would you like to use: YOUR-APP-NAME-2017-11-10-15-17-48

A IRV INESV IR

After the project is created you will get a success message which also includes details on the path where
the aws-exports.js is copied.

awsmobile project's details logged at: awsmobilejs/#current-backend-info/backend-
details.json

awsmobile project's access information logged at: awsmobilejs/#current-backend-info/aws-
exports.js

awsmobile project's access information copied to: src/aws-exports.js

awsmobile project's specifications logged at: awsmobilejs/#current-backend-info/mobile-hub-

project.yml

contents in #current-backend-info/ is synchronized with the latest information in the aws
cloud

Your project is now initialized.

Connect to Your Backend

AWS Mobile uses the open source AWS Amplify library to link your code to the AWS features configured
for your app.

This section of the guide shows examples using a React application of the kind output by create-
react-app or a similar tool.

To connect the app to your configured AWS features

In index. js (or in other code that runs at launch-time), add the following imports.

import Amplify from 'aws-amplify';
import awsmobile from './YOUR-PATH-TO/aws-exports';

Then add the following code.

Amplify.configure(awsmobile);

367

https://aws.github.io/aws-amplify

AWS Mobile Developer Guide
Next Steps

Run Your App Locally
Your app is now ready to launch and use the default features configured by AWS Mobile.
To launch your app locally in a browser

In the root folder of your app, run:

awsmobile run

Behind the scenes, this command runs npm install to install the Amplify library and also pushes any
backend configuration changes to AWS Mobile. To run your app locally without pushing backend changes
you cou can choose to run npm install and then run npm start.

Anytime you launch your app, app analytics are gathered and can be visualized (p. 370) in an AWS
console.

AWS Free Tier Initializing your app or adding features through
the CLI will cause AWS services to be configured
on your behalf. The pricing for AWS Mobile
services enables you to learn and prototype at
little or no cost using the AWS Free Tier.

Next Steps

Topics
» Deploy your app to the cloud (p. 368)
» Test Your App on Our Mobile Devices (p. 369)
« Add Features (p. 370)
e Learn more (p. 370)

Deploy your app to the cloud

Using a simple command, you can publish your app's frontend to hosting on a robust content
distribution network (CDN) and view it in a browser.

To deploy your app to the cloud and launch it in a browser

In the root folder of your app, run:

awsmobile publish

To push any backend configuration changes to AWS and view content locally, run awsmobile run.In
both cases, any pending changes you made to your backend configuration are made to your backend
resources.

By default, the CLI configures AWS Mobile Hosting and Streaming (p. 342) feature, that hosts your app
on Amazon CloudFront CDN endpoints. These locations make your app highly available to the public on
the Internet and support media file streaming

You can also use a custom domain (p. 383) for your hosting location.

368

https://aws.amazon.com/mobile/pricing
https://aws.amazon.com/mobile/pricing
https://aws.amazon.com/free
https://aws.amazon.com/cloudfront/
http://docs.aws.amazon.com/mobile-hub/latest/developerguide/url-cf-dev;Tutorials.html

AWS Mobile Developer Guide
Next Steps

Test Your App on Our Mobile Devices
Invoke a free remote test of your app on a variety of real devices and see results, including screen shots.
To invoke a remote test of your app

In the root folder of your app, run:

awsmobile publish --test

The CLI will open the reporting page for your app in the Mobile Hub console to show the metrics
gathered from the test devices. The device that runs the remote test you invoke resides in AWS Device
Farm which provides flexible configuration of tests and reporting.

WS Mobile Hub - tets6 . Support

@ Performance tests have completed. You can see the details of your app's performance below.

PERFORMANCE RESULTS

http://tets-hosting-mobilehub-887959976.5s3-website-us-east-1.amazonaws.com

Time to First Meaningful Paint

First Meaningful Paint is the time when page's primary content appeared on

AWS Mobile Hub

the screen. This is the primary metric for user-perceived loading experience.

2460 2501 2399

average ms average iOS ms average android ms

Metrics are from a website hosted directly on Amazon S3 (Simple Storage Service). This will exhibit higher load

times than websites that use Amazon CloudFront CDN {Content Delivery Network)

Test results are from top 5 devices (Full list of 400 supported devices ()

Pad Mini &

iPhone 7

iPhone B

Google Pixel 2

Galaxy S8 Edge (Verizon)

0 500 1000 1500 2000 2500 3000

Screenshots

AWS Mobile Hub Sample AWS Mobile Hub Sample AWS Mobile Hub
Web App eb App

Sample Web App AWS Mobile Hub

Sample Web App

iPad Mini 4 iPhone 7 iPhone 8 Google Pixel 2 Galaxy 56 Edge (Verizon)
i05 9.0 i0S 10.3.2 i0s11.0 Android 8.0.0 Android 5.0.2

369

https://aws.amazon.com/device-farm/
https://aws.amazon.com/device-farm/

AWS Mobile Developer Guide
Add Analytics

Add Features

Add the following AWS Mobile features to your mobile app using the CLI.

« Analytics (p. 370)

« User Sign-in (p. 371)

« NoSQL Database (p. 372)
« User File Storage (p. 377)
» Cloud Logic (p. 379)

Learn more

To learn more about the commands and usage of the AWS Mobile CLI, see the AWS Mobile CLI
reference (p. 386).

Learn about AWS Mobile Amplify.

Add Analytics

BEFORE YOU BEGIN The steps on this page assume you have already
completed the steps on Get Started (p. 366).

Basic Analytics Backend is Enabled for Your App

When you complete the AWS Mobile CLI setup and launch your app, anonymized session and device
demographics data flows to the AWS analytics backend.

To send basic app usage analytics to AWS

Launch your app locally by running:

npm start

When you use your app the Amazon Pinpoint service gathers and visualizes analytics data.

To view the analytics using the Amazon Pinpoint console

1. Run npm start, awsmobile run, or awsmobile publish --test at least once.
2. Open your project in the AWS Mobile Hub console.

awsmobile console

3. Choose the Analytics icon on the left, to navigate to your project in the Amazon Pinpoint console.
4. Choose Analytics on the left.

You should see an up-tick in several graphs.

Add Custom Analytics to Your App

You can configure your app so that Amazon Pinpoint gathers data for custom events that you register
within the flow of your code.

To instrument custom analytics in your app

370

https://aws.github.io/aws-amplify
http://docs.aws.amazon.com/pinpoint/latest/developerguide/
https://console.aws.amazon.com/mobilehub/
https://console.aws.amazon.com/pinpoint/
http://docs.aws.amazon.com/pinpoint/latest/developerguide/

AWS Mobile Developer Guide
Add User Sign-in

In the file containing the event you want to track, add the following import:

import { Analytics } from 'aws-amplify';

Add the a call like the following to the spot in your JavaScript where the tracked event should be fired:

componentDidMount() {
Analytics.record('FIRST-EVENT-NAME');
}

Or to relevant page elements:

handleClick = () => {
Analytics.record('SECOND-EVENT-NAME');
}

<button onClick={this.handleClick}>Call request</button>

To test:

1. Save the changes and run npm start, awsmobile run, or awsmobile publish --test to launch
your app. Use your app so that tracked events are triggered.

2. In the Amazon Pinpoint console, choose Events near the top.
3. Select an event in the Event dropdown menu on the left.

Custom event data may take a few minutes to become visible in the console.

Next Steps

Learn more about the analytics in AWS Mobile which are part of the Messaging and Analytics (p. 340)
feature. This feature uses Amazon Pinpoint.

Learn about AWS Mobile CLI (p. 386).

Learn about AWS Mobile Amplify.

Add Auth / User Sign-in

BEFORE YOU BEGIN The steps on this page assume you have already
completed the steps on Get Started (p. 366).

Set Up Your Backend

The AWS Mobile CLI components for user authentication include a rich, configurable Ul for sign-up and
sign-in.

To enable the Auth features

In the root folder of your app, run:

awsmobile user-signin enable

awsmobile push

371

https://console.aws.amazon.com/pinpoint/
http://docs.aws.amazon.com/pinpoint/latest/developerguide/welcome.html
https://aws.github.io/aws-amplify

AWS Mobile Developer Guide
Add NoSQL Database

Connect to Your Backend

The AWS Mobile CLI enables you to integrate ready-made sign-up/sign-in/sign-out Ul from the
command line.

To add user auth Ul to your app

1. Install AWS Amplify for React library.

npm install --save aws-amplify-react

2. Add the following import in App. js (or other file that runs upon app startup):

import { withAuthenticator } from 'aws-amplify-react';

3. Then change export default App; to the following.

export default withAuthenticator(App);

To test, run npm start, awsmobile run, or awsmobile publish --test.

Next Steps

Learn more about the AWS Mobile User Sign-in (p. 348) feature, which uses Amazon Cognito.
Learn about AWS Mobile CLI (p. 386).

Learn about AWS Mobile Amplify.

Access Your Database

BEFORE YOU BEGIN The steps on this page assume you have already
completed the steps on Get Started (p. 397).

The AWS Mobile CLI and Amplify library make it easy to perform create, read, update, and delete
("CRUD") actions against data stored in the cloud through simple API calls in your JavaScript app.

Set Up Your Backend

To create a database
1. Enable the NoSQL database feature and configure your table.

In the root folder of your app, run:

awsmobile database enable --prompt

2. Choose Open to make the data in this table viewable by all users of your application.

? Should the data of this table be open or restricted by user?
Open
Restricted

3. For this example type in todos as your Table name.

372

http://docs.aws.amazon.com/cognito/latest/developerguide/welcome.html
https://aws.github.io/aws-amplify

AWS Mobile Developer Guide
Add NoSQL Database

? Table name: todos

Add columns and queries

You are creating a table in a NoSQL database and adding an initial set of columns, each of which has

a name and a data type. NoSQL lets you add a column any time you store data that contains a new
column. NoSQL tables must have one column defined as the Primary Key, which is a unique identifier for
each row.

1. For this example, follow the prompts to add three columns: team (string), todoId (number), and
text (string).

? What would you like to name this column: team
? Choose the data type: string

2. When prompted to ? Add another column, type Y and then choose enter. Repeat the steps to
create todoId and text columns.

3. Select team as the primary key.

? Select primary key
team

todoId

text

4. Choose (todoId) as the sort key and then no to adding any more indexes, to keep the example
simple.

Sort Keys and Indexes To optimize preformance, you can define a
column as a Sort Key. Choose a column to
be a Sort Key if it will be frequently used in
combination with the Primary key to query your
table. You can also create Secondary Indexes to
make addtional columns sort keys.

? Select sort key
todoId

text

(No Sort Key)

? Add index (Y/n): n
Table todos saved.

The todos table is now created.

Use a cloud API to do CRUD operations

To access your NoSQL database, you will create an API that can be called from your app to perform
CRUD operations.

Why an API? Using an API to access your database provides
a simple coding interface on the frontend and

373

http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/SQLtoNoSQL.html

AWS Mobile Developer Guide
Add NoSQL Database

robust flexibility on the backend. Behind the
scenes, a call to an Amazon API Gateway API
end point in the cloud is handled by a serverless
Lambda function.

To create a CRUD API

1. Enable and configure the Cloud Logic feature**

awsmobile cloud-api enable --prompt

2. Choose Create CRUD API for an existing Amazon DynamoDB table API for an exisitng
Amazon DynamoDB table" and then choose enter.

? Select from one of the choices below. (Use arrow keys)
Create a new API
Create CRUD API for an existing Amazon DynamoDB table

3. Select the todos table created in the previous steps, and choose enter.

? Select Amazon DynamoDB table to connect to a CRUD API
todos

now in place only on your local machine.

4. Push your configuration to the cloud. Without this step, the configuration for your database and APl is

awsmobile push

The required DynamoDB tables, APl Gateway endpoints, and Lambda functions will now be created.

Create your first Todo
The AWS Mobile CLI enables you to test your API from the command line.

Run the following command to create your first todo.

awsmobile cloud-api invoke todosCRUD POST /todos '{"body": {"team": "React", "todoId": 1,
"text": "Learn more Amplify"}}'

Connect to Your Backend

The examples in this section show how you would integrate AWS Amplify library calls using React (see
the AWS Amplify documentation to use other flavors of Javascript).

The following component is a simple Todo list that you might add to a create-react-app project. The

Todos component currently adds and displays todos to and from an in memory array.

// To Do app example
import React from 'react';

class Todos extends React.Component {
state = { team: "React", todos: [] };

374

http://docs.aws.amazon.com/apigateway/latest/developerguide/welcome.html
http://docs.aws.amazon.com/lambda/latest/dg/welcome.html
https://aws.github.io/aws-amplify/

AWS Mobile Developer Guide
Add NoSQL Database

render() {
let todoItems = this.state.todos.map(({todoId, text}) => {
return <1li key={todoId}>{text}</1li>;
i

return (
<div style={styles}>
<h1>{this.state.team} Todos</hl>

{todoItems}

<form>
<input ref="newTodo" type="text" placeholder="What do you want to do?" />
<input type="submit" value="Save" />

</form>

</div>
)i
}
}

let styles = {
margin: "0 auto",
width: "25%"

}i

export default Todos;

Displaying todos from the cloud
The API module from AWS Amplify allows you connect to DynamoDB through API Gateway endpoints.
To retrieve and display items in a database

1. Import the API module from aws-amplify at the top of the Todos component file.

import { API } from 'aws-amplify';

2. Add the following componentDidMount to the Todos component to fetch all of the todos.

async componentDidMount() {
let todos = await API.get('todosCRUD', ~/todos/${this.state.team}”);
this.setState({ todos });

}

When the Todos component mounts it will fetch all of the todos stored in your database and display
them.

Saving todos to the cloud

The following fragment shows the saveTodo function for the Todo app.

async saveTodo(event) {
event.preventDefault();

const { team, todos } = this.state;
const todoId = todos.length + 1;
const text = this.refs.newTodo.value;

375

AWS Mobile Developer Guide
Add NoSQL Database

const newTodo = {team, todoId, text};

await API.post('todosCRUD', '/todos', { body: newTodo });
todos.push(newTodo);

this.refs.newTodo.value = '';

this.setState({ todos, team });

Update the form element in the component's render function to invoke the saveTodo function when
the form is submitted.

<form onSubmit={this.saveTodo.bind(this)}>

Your entire component should look like the following:

// To Do app example

import React from 'react';
import { API } from 'aws-amplify';

class Todos extends React.Component {
state = { team: "React", todos: [] };

async componentDidMount() {
const todos = await API.get('todosCRUD', ~/todos/${this.state.team}”)
this.setState({ todos });

}

async saveTodo(event) {
event.preventDefault();

const { team, todos } = this.state;
const todoId = todos.length + 1;
const text = this.refs.newTodo.value;

const newTodo = {team, todoId, text};

await API.post('todosCRUD', '/todos', { body: newTodo });
todos.push(newTodo);

this.refs.newTodo.value = '';

this.setState({ todos, team });

}

render() {
let todoItems = this.state.todos.map(({todoId, text}) => {
return <li key={todoId}>{text}</1li>;
i

return (
<div style={styles}>
<h1>{this.state.team} Todos</hl>

{todoItems}

<form onSubmit={this.saveTodo.bind(this)}>
<input ref="newTodo" type="text" placeholder="What do you want to do?" />
<input type="submit" value="Save" />

</form>

</div>
)i
}
}

376

AWS Mobile Developer Guide
Add User File Storage

let styles = {
margin: "0 auto",
width: "25%"

}

export default Todos;

Next Steps

« Learn how to retrieve specific items and more with the APl module in AWS Amplify.
« Learn how to enable more features for your app with the AWS Mobile CLI.

Add Storage

BEFORE YOU BEGIN The steps on this page assume you have already
completed the steps on Get Started (p. 366).

The AWS Mobile CLI and AWS Amplify library make it easy to store and manage files in the cloud from
your JavaScript app.

Set Up the Backend

Enable the User File Storage feature by running the following commands in the root folder of your app.

awsmobile user-files enable

awsmobile push

Connect to the Backend

The examples in this section show how you would integrate AWS Amplify library calls using React (see
the AWS Amplify documentation to use other flavors of Javascript).

The following simple component could be added to a create-react-app project to present an
interface that uploads images and download them for display.

// Image upload and download for display example component
// src/ImageViewer.js

import React, { Component } from 'react';

class ImageViewer extends Component {
render() {
return (
<div>
<p>Pick a file</p>
<input type="file" />
</div>
)i
}
}

export default ImageViewer;

377

https://aws.github.io/aws-amplify/media/developer_guide.html
https://aws.github.io/aws-amplify
https://aws.github.io/aws-amplify

AWS Mobile Developer Guide
Add User File Storage

Upload a file

The Storage module enables you to upload files to the cloud. All uploaded files are publicly viewable by
default.

Import the storage module in your component file.

// ./src/ImageViewer.js

import { Storage } from 'aws-amplify';

Add the following function to use the put function on the storage module to upload the file to the
cloud, and set your component’s state to the name of the file.

uploadFile(event) {
const file = event.target.files[0];
const name file.name;

Storage.put(key, file).then(() => {
this.setState({ file: name });
i
¥

Place a call to the uploadFile function in the input element of the component’s render function, to
start upload when a user selects a file.

render() {
return (
<div>
<p>Pick a file</p>
<input type="file" onChange={this.uploadFile.bind(this)} />
</div>
)i
}

Display an image

To display an image, this example shows the use of the S3Image component of the AWS Amplify for
React library.

1. From a terminal, run the following command in the root folder of your app.

npm install --save aws-amplify-react

2. Import the s3Image module in your component.

import { S3Image } from 'aws-amplify-react';

Use the S3Image component in the render function. Update your render function to look like the
following:

render() {
return (
<div>
<p>Pick a file</p>
<input type="file" onChange={this.handleUpload.bind(this)} />
{ this.state && <S3Image path={this.state.path} /> }
</div>

378

AWS Mobile Developer Guide
Add Cloud Logic

)i

Put together, the entire component should look like this:

// Image upload and download for display example component

import React, { Component } from 'react';
import { Storage } from 'aws-amplify';
import { S3Image } from 'aws-amplify-react';

class ImageViewer extends Component {

handleUpload(event) {
const file = event.target.files[0];
const path = file.name;
Storage.put(path, file).then(() => this.setState({ path }));

}

render() {
return (
<div>
<p>Pick a file</p>
<input type="file" onChange={this.handleUpload.bind(this)} />
{ this.state && <S3Image path={this.state.path} /> }
</div>
)i
¥
}

export default ImageViewer;

Next Steps

« Learn how to do private file storage and more with the Storage module in AWS Amplify.
« Learn how to enable more features for your app with the AWS Mobile CLI.

« Learn how to use those features in your app with the AWS Amplify library.

« Learn more about the analytics for the User File Storage feature.

« Learn more about how your files are stored on Amazon Simple Storage Service.

Access Your APIs

BEFORE YOU BEGIN The steps on this page assume you have already
completed the steps on Get Started (p. 366).

The AWS Mobile CLI and Amplify library make it easy to create and call cloud APIs and their handler logic
from your JavaScript.

Set Up Your Backend
Create Your API

In the following examples you will create an API that is part of a cloud-enabled number guessing app.
The CLI will create a serverless handler for the API behind the scenes.

379

https://aws.github.io/aws-amplify/media/developer_guide.html
https://aws.github.io/aws-amplify
https://aws.github.io/aws-amplify
https://alpha-docs-aws.amazon.com/pinpoint/latest/developerguide/welcome.html
https://aws.amazon.com/documentation/s3/

AWS Mobile Developer Guide
Add Cloud Logic

To enable and configure an API

1. In the root folder of your app, run:

awsmobile cloud-api enable --prompt

2. When prompted, name the APl Guesses.

? API name: Guesses

3. Name a HTTP path /number. This maps to a method call in the API handler.

? HTTP path name (/items): /number

4. Name your Lambda API handler function guesses.

? Lambda function name (This will be created if it does not already exists): guesses

5. When prompted to add another HTTP path, type N.

? Add another HTTP path (y/N): N

6. The configuration for your Guesses API is now saved locally. Push your configuration to the cloud.

awsmobile push

To test your APl and handler

From the command line, run:

awsmobile cloud-api invoke Guesses GET /number

The Cloud Logic API endpoint for the Guesses API is now created.
Customize Your APl Handler Logic

The AWS Mobile CLI has generated a Lambda function to handle calls to the Guesses API. It is saved
locally in YOUR-APP-ROOT-FOLDER/awsmobilejs/backend/cloud-api/guesses. The app. js file
in that directory contains the definitions and functional code for all of the paths that are handled for
your API.

To customize your API handler

1. Find the handler for POST requests on the /number path. That line starts with
app.post('number',.Replace the callback function's body with the following:

awsmobilejs/backend/cloud-api/guesses/app.js
app.post('/number', function(req, res) {

const correct = 12;

let guess = req.body.guess

let result = ""
if (guess === correct) {
result = "correct";

} else if (guess > correct) {
result = "high";

380

AWS Mobile Developer Guide
Add Cloud Logic

} else if (guess < correct) {
result = "low";

}

res.json({ result })

)i

2. Push your changes to the cloud.

awsmobile push

The Guesses API handler logic that implements your new number guessing functionality is now
deployed to the cloud.

Connect to Your Backend

The examples in this section show how you would integrate AWS Amplify library calls using React (see
the AWS Amplify documentation to use other flavors of Javascript).

The following simple component could be added to a create-react-app project to present the
number guessing game.

// Number guessing game app example
src/GuessNumber. js

class GuessNumber extends React.Component {
state = { answer: null };

render() {
let prompt = ""
const answer = this.state.answer

switch (answer) {
case "lower":

prompt = "Incorrect. Guess a lower number."
case "higher":
prompt = "Incorrect. Guess a higher number."
case "correct":
prompt = “Correct! The number is ${this.refs.guess.value}!”
default:
prompt = "Guess a number between 1 and 100."
}
return (
<div style={styles}>
<hl1>Guess The Number</hl>
<p>{ prompt }</p>
<input ref="guess" type="text" />
<button type="submit">Guess</button>
</div>
)

}
}

let styles = {
margin: "0 auto",
width: "30%"

381

https://aws.github.io/aws-amplify/

AWS Mobile Developer Guide
Add Cloud Logic

}i

export default GuessNumber;

Make a Guess

The API module from AWS Amplify allows you to send requests to your Cloud Logic APIs right from your
JavaScript application.

To make a RESTful API call

1. Import the API module from aws-amplify in the GuessNumber component file.

import { API } from 'aws-amplify';

2. Add the makeGuess function. This function uses the APT module’s post function to submit a guess to
the Cloud Logic API.

async makeGuess() {
const guess = parseInt(this.refs.guess.value);
const body = { guess }
const { result } = await API.post('Guesses', '/number', { body });
this.setState({
guess: result
i
¥

3. Change the Guess button in the component’s render function to invoke the makeGuess function
when it is chosen.

<button type="submit" onClick={this.makeGuess.bind(this)}>Guess</button>

Open your app locally and test out guessing the number by running awsmobile run.

Your entire component should look like the following:

// Number guessing game app example

import React from 'react';
import { API } from 'aws-amplify';

class GuessNumber extends React.Component {
state = { guess: null };

async makeGuess() {
const guess = parseInt(this.refs.guess.value, 10);
const body = { guess }
const { result } = await API.post('Guesses', '/number', { body });
this.setState({
guess: result
}i
}

render() {
let prompt = ""

switch (this.state.guess) {

382

AWS Mobile Developer Guide
Host Your Web App

case "high":
prompt = "Incorrect. Guess a lower number.";
break;

case "low":
prompt = "Incorrect. Guess a higher number.";
break;

case "correct":
prompt = “Correct! The number is ${this.refs.guess.value}!”;
break;

default:
prompt = "Guess a number between 1 and 100.";

}

return (
<div style={styles}>
<hl1>Guess The Number</hl>
<p>{ prompt }</p>

<input ref="guess" type="text" />
<button type="submit" onClick={this.makeGuess.bind(this)}>Guess</button>
</div>

)

}
}

let styles = {
margin: "0 auto",
width: "30%"

}i

export default GuessNumber;

Next Steps

« Learn how to retrieve specific items and more with the APl module in AWS Amplify.
« Learn how to enable more features for your app with the AWS Mobile CLI.
« Learn more about what happens behind the scenes, see Set up Lambda and API Gateway.

Host Your Web App

Topics
« About Hosting and Streaming (p. 383)
« Managing Your App Assets (p. 384)
« Configure a Custom Domain for Your Web App (p. 385)

About Hosting and Streaming

The first time that you push your web app to the cloud, the Hosting and Streaming feature is enabled to
statically host your app on the web. Using the AWS Mobile CLI, this happens when you first run:

$ awsmobile publish

A container for your content is created using an Amazon S3 bucket. The content is available publicly on
the Internet and you can preview the content directly using a testing URL.

383

https://aws.github.io/aws-amplify/media/developer_guide.html
https://aws.github.io/aws-amplify
https://alpha-docs-aws.amazon.com/apigateway/latest/developerguide/set-up-lambda-proxy-integrations.html
http://docs.aws.amazon.com/AmazonS3/latest/dev/

AWS Mobile Developer Guide
Host Your Web App

Content placed in your bucket is automatically distributed to a global content delivery network (CDN).
Amazon CloudFront implements the CDN which can host your app on an endpoint close to every user,
globally. These endpoints can also stream media content. To learn more, see CloudFront Streaming
Tutorials.

By default, Hosting and Streaming deploys a simple sample web app that accesses AWS services.

Managing Your App Assets
You can use the AWS Mobile CLI or the Amazon S3 console to manage the content of your bucket.

Use the AWS CLI to Manage Your Bucket Contents

AWS CLI allows you to review, upload, move or delete your files stored in your bucket using the
command line. To install and configure the AWS CLI client, see Getting Set Up with the AWS Command
Line Interface.

As an example, the sync command enables transfer of files to and from your local folder (source) and
your bucket (destination).

$ aws s3 sync {source destination} [--options]

The following command syncs all files from your current local folder to the folder in your web app's
bucket defined by path.

$ aws s3 sync . s3://my-web-app-bucket/path

To learn more about using AWS CLI to manage Amazon S3, see Using Amazon S3 with the AWS
Command Line Interface

Use the Amazon S3 Console to Manage Your Bucket

To use the Amazon S3 console to review, upload, move or delete your files stored in your bucket, use the
following steps.

1. From the root of your project, run:

awsmobile console

2. Choose the tile with the name of your project, then choose the Hosting and Streaming tile.

3. Choose the link labelled Manage files to display the contents of your bucket in the Amazon S3
console.

https:/fdfccBibk2mhf3.cloudfront.net/

Manage files and hosting

Other Useful Functions in the AWS Mobile Hub Console

The Mobile Hub console also provides convenient ways to browse to your web content, return to the AWS
CLI content on this page, and other relevant tasks. These include:

384

https://aws.amazon.com/cloudfront/
http://docs.aws.amazon.com/mobile-hub/latest/developerguide/url-cf-dev;Tutorials.html
http://docs.aws.amazon.com/mobile-hub/latest/developerguide/url-cf-dev;Tutorials.html
http://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-set-up.html
http://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-set-up.html
http://docs.aws.amazon.com/cli/latest/userguide/cli-s3.html
http://docs.aws.amazon.com/cli/latest/userguide/cli-s3.html

AWS Mobile Developer Guide
Reference

« The View from S3 link browses to the web contents of your bucket. When Hosting and Streaming is
enabled, the bucket is populated with the files for a default web app files that is viewable immediately.

2 4

View from 53

Use this when developing. Content is updated immediately. No Caching oo
HTTPS support.

Amazon S3 URL (Testing Only)
http-//handstest-hosting-mobilehub-1033187 184 53-website-
us-east-l.amazonaws.com

« The View from CloudFront browses to the web contents that have propagated from your bucket to
CDN. The endpoint propagation is dependent on network conditions. You can expect your content to
be distributed and viewable within one hour.

4

View from CloudFront

Distritsite your app 1o your users. Content will be available within 1 hour.

Amazon CloudFront
https://dfcc8ibk2mhi3.cloudfront.net/

« The Sync files with the command line link takes you to content on this page that describes how to use
the command line to manage the web app and streaming media files in your bucket.

ey
-

Configure a Custom Domain for Your Web App

To use your custom domain for linking to your Web app, use the Route 53 service to configure DNS
routing.

For a web app hosted in a single location, see Routing Traffic to a Website that Is Hosted in an Amazon
S3 Bucket.

For a web app distributed through a global CDN, see Routing Traffic to an Amazon CloudFront Web
Distribution by Using Your Domain Name

AWS Mobile Hub Features

The following pages contain reference material for the AWS Mobile CLI for Web (JavaScript).

Topics
« AWS Mobile CLI Reference (p. 386)
o AWS Mobile CLI User Credentials (p. 395)

385

http://docs.aws.amazon.com/Route53/latest/DeveloperGuide/RoutingToS3Bucket.html
http://docs.aws.amazon.com/Route53/latest/DeveloperGuide/RoutingToS3Bucket.html
http://docs.aws.amazon.com/Route53/latest/DeveloperGuide/routing-to-cloud-fron-distribution.html
http://docs.aws.amazon.com/Route53/latest/DeveloperGuide/routing-to-cloud-fron-distribution.html

AWS Mobile Developer Guide
AWS Mobile CLI Reference

AWS Mobile CLI Reference

The AWS Mobile CLI provides a command line interface for frontend JavaScript developers to seamlessly
enable AWS services and configure into their apps. With minimal configuration, you can start using all of
the functionality provided by the the AWS Mobile Hub from your favorite terminal program.

Installation and Usage
This section details the usage and the core commands of the awsmobile CLI for JavaScript.
Install AWS Mobile CLI

1. Sign up for the AWS Free Tier.
2. Install Node.js with NPM.
3. Install AWS Mobile CLI

npm install -g awsmobile-cli

4. Configure the CLI with your AWS credentials

To setup permissions for the toolchain used by the CLI, run:

awsmobile configure

If prompted for credentials, follow the steps provided by the CLI. For more information, see provide
IAM credentials to AWS Mobile CLI (p. 395).

Usage

The AWS Mobile CLI usage is designed to resemble other industry standard command line interfaces.

awsmobile <command> [options]

The help and version options are universal to all the commands. Additional special options for some
commands are detailed in the relevant sections.

-V, --version output the version number
-h, --help output usage information

For example:

awsmobile -help
or
awsmobile init --help

Summary of CLI Commands

The current set of commands supported by the awsmobile CLI are listed below.
awsmobile init (p. 387) Initializes a new Mobile Hub project, checks for
IAM keys, and pulls the aws-exports.js file

awsmobile configure (p. 388) Shows existing keys and allows them to be
changed if already set. If keys aren't set, deep

386

https://console.aws.amazon.com/mobilehub
https://aws.amazon.com/free/
https://nodejs.org/en/download/

AWS Mobile Developer Guide
AWS Mobile CLI Reference

awsmobile pull (p. 389)

awsmobile push (p. 389)

awsmobile publish (p. 389)

awsmobile run (p. 390)

awsmobile console (p. 390)
awsmobile features (p. 390)
awsmobile <feature-name> enable [--
prompt] (p. 391)

awsmobile <feature-name> disable (p. 392)

awsmobile <feature-name> configure (p. 393)

awsmobile cloud-api invoke <apiname>
<method> <path> [init] (p. 394)

awsmobile delete (p. 394)

awsmobile help [cmd] (p. 395)

init

links the user to the IAM console to create keys
and then prompts for the access key and secret
key. This command helps edit configuration
settings for the aws account or the project.

Downloads the latest aws-exports.js, YAML or any
other relevant project details from the Mobile Hub
project

Uploads local metadata, Lambda code, Dynamo
definitions or any other relevant project details to
Mobile Hub

Executes awsmobile push, then builds and
publishes client-side application to S3 and Cloud
Front

Executes awsmobile push, then executes the
project's start command to test run the client-side
application

Open the web console of the awsmobile Mobile
Hub project in the default browser

Shows available and enabled features. Toggle to
select or de-select features.

Enables the feature with the defaults (and prompt
for changes)

Disables the feature

Contains feature-specific sub commands like add-
table, add-api, etc.

Invokes the API for testing locally. This helps
quickly test unsigned APIs in your local
environment.

Deletes the Mobile hub project.

Displays help for [cmd].

The awsmobile init command initializes a new Mobile Hub project, checks for IAM keys, and pulls the

aws-exports.js file.

There are two usages of the awsmobile init command

1. Initialize the current project with awsmobilejs features

awsmobile init

When prompted, set these project configs:

Please tell us about your project:

? Where is your project's source directory:

src

387

AWS Mobile Developer Guide
AWS Mobile CLI Reference

? Where is your project's distribution directory that stores build artifacts: build
? What is your project's build command: npm run-script build
? What is your project's start command for local test run: npm run-script start

? What awsmobile project name would you like to use: my-mobile-project

The source directory is where the the AWS Mobile CLI copies the latest aws-exports. js to be easily
available for your front-end code. This file is automatically updated everytime features are added or
removed. Specifying a wrong / unavailable folder will not copy the file over.

The Distribution directly is essentially the build directory for your project. This is used during the
awsmobile publish process.

The project's build and start values are used during the awsmobile publish and awsmobile run
commands respectively.

The awsmobile project name is the name of the backend project created in the Mobile hub.

You can alter the settings about your project by using the awsmobile configure project (p. 388)
command.

. Initialize and link to an existing awsmobile project as backend

awsmobile init <awsmobile-project-id>

The awsmobile-project-id is the id of the existing backend project in the Mobile Hub. This command
helps attach an existing backend project to your app.

. Remove the attached awsmobile project from the backend.

awsmobile init --remove

This command removes the attached backend project associated with your app and cleans the
associated files. This will not alter your app in any way, other than removing the backend project itself.

configure

The awsmobile configure shows existing keys and allows them to be changed if already set. If keys
aren't set, deep links the user to the IAM console to create keys and then prompts for the access key
and secret key. There are two possible usages of this command. Based on the argument selected, this
command can be used to set or change the aws account settings OR the project settings.

awsmobile configure [aws|project]

1. Configuring the aws account settings using the aws argument. This is the default argument for this

command

awsmobile configure
or
awsmobile configure aws

You will be prompted with questions to set the aws account credentials as below

configure aws
? accessKeyId: <ACCESS-KEY-ID>
? secretAccessKey: <SECRET-ACCESS-KEY>

388

AWS Mobile Developer Guide
AWS Mobile CLI Reference

? region: <SELECT-REGION-FROM-THE-LIST>

2. Configuring the project settings using the project argument

awsmobile configure project

You will be prompted with questions to configure project as detailed below

Where is your project's source directory: src

Where is your project's distribution directory to store build artifacts: dist
What is your project's build command: npm run-script build

What is your project's start command for local test run: npm run-script start

RV VY

3. Retrieve and display the aws credentials using the --1ist option

awsmobile configure --list

pull

The awsmobile pull command downloads the latest aws-exports.js, YAML and any relevant cloud /
backend artifacts from the Mobile Hub project to the local dev environment. Use this command if you
modified the project on the Mobile Hub and want to get the latest on your local environment.

awsmobile pull

push

The awsmobile push uploads local metadata, Lambda code, Dynamo definitions and any relevant
artifacts to Mobile Hub. Use this command when you enable, disable or configure features on your local
evironment and want to update the backend project on the Mobile Hub with the relevant updates.

awsmobile push

Use awsmobile push after using awsmobile features, awsmobile <feature> enable,
awsmobile <feature> disable or awsmobile <feature> configure to update the backend
project appropriately. This can be used either after each of these or once after all of the changes are
made locally.

publish

The awsmobile publish command first executes the awsmobile push command, then builds and
publishes client-side code to Amazon S3 hosting bucket. This command publishes the client application
to s3 bucket for hosting and then opens the browser to show the index page. It checks the timestamps
to automatically build the app if necessary before deployment. It checks if the client has selected hosting
in their backend project features, and if not, it'll prompt the client to update the backend with hosting
feature.

awsmobile publish

The publish command has a number of options to be used.

1. Refresh the Cloud Front distributions

389

AWS Mobile Developer Guide
AWS Mobile CLI Reference

awsmobile publish -c¢
or
awsmobile publish --cloud-front

2. Test the application on AWS Device Farm

awsmobile publish -t
or
awsmobile publish --test

3. Suppress the tests on AWS Device Farm

awsmobile publish -n

4. Publish the front end only without updating the backend

awsmobile publish -f
or
awsmobile publish --frontend-only

run

The awsmobile run command first executes the awsmobile push command, then executes the start
command you set in the project configuration, such as npm run start ornpm run ios. This can be
used to conveniently test run your application locally with the latest backend development pushed to
the cloud.

awsmobile run

console

The awsmobile console command opens the web console of the awsmobile Mobile Hub project in the
default browser

awsmobile console

features

The awsmobile features command displays all the available awsmobile features, and allows you to
individually enable/disable them locally. Use the arrow key to scroll up and down, and use the space key
to enable/disable each feature. Please note that the changes are only made locally, execute awsmobile
push to update the awsmobile project in the cloud.

awsmobile features

The features supported by the AWS Mobile CLI are:

« user-signin (Amazon Cognito)

« user-files (Amazon S3)

« cloud-api (Lambda / API Gateway)
 database (DynamoDB)

« analytics (Amazon Pinpoint)

390

AWS Mobile Developer Guide
AWS Mobile CLI Reference

 hosting (Amazon S3 and CloudFront)

? select features: (Press <space> to select, <a> to toggle all, <i> to inverse selection)
user-signin

user-files

cloud-api

database

analytics

hosting

W R W

Use caution when disabling a feature. Disabling the feature will delete all the related objects (APIs,
Lambda functions, tables etc). These artifacts can not be recovered locally, even if you re-enable the
feature.

Use awsmobile push after using awsmobile <feature> disable to update the backend project on
the AWS Mobile Hub project with the selected features.

enable

The awsmobile <feature> enable enables the specified feature with the default settings. Please
note that the changes are only made locally, execute awsmobile push to update the AWS Mobile project
in the cloud.

awsmobile <feature> enable

The features supported by the AWS Mobile CLI are:

« user-signin (Amazon Cognito)

« user-files (Amazon S3)

« cloud-api (Lambda / API Gateway)
 database (DynamoDB)

« analytics (Amazon Pinpoint)
 hosting (Amazon S3 and CloudFront)

The awsmobile <feature> enable --prompt subcommand allows user to specify the details of the
mobile hub feature to be enabled, instead of using the default settings. It prompts the user to answer a
list of questions to specify the feature in detail.

awsmobile <feature> enable -- prompt

Enabling the user-signin feature will prompt you to change the way it is enabled, configure advanced
settings or disable sign-in feature to the project. Selecting the desired option may prompt you with
further questions.

awsmobile user-signin enable --prompt

? Sign-in is currently disabled, what do you want to do next (Use arrow keys)
Enable sign-in with default settings
Go to advance settings

Enabling the user-files feature with the --prompt option will prompt you to confirm usage of S3 for
user files.

awsmobile user-files enable --prompt

391

AWS Mobile Developer Guide
AWS Mobile CLI Reference

? This feature is for storing user files in the cloud, would you like to enable it? Yes

Enabling the cloud-api feature with the --prompt will prompt you to create, remove or edit an API
related to the project. Selecting the desired option may prompt you with further questions.

awsmobile cloud-api enable --prompt

? Select from one of the choices below. (Use arrow keys)
Create a new API

Enabling the database feature with the --prompt will prompt you to with initial questions to specify
your database table details related to the project. Selecting the desired option may prompt you with
further questions.

awsmobile database enable --prompt

? Should the data of this table be open or restricted by user? (Use arrow keys)
Open
Restricted

Enabling the analytics feature with the --prompt will prompt you to confirm usage of Pinpoint
Analytics.

awsmobile analytics enable --prompt

? Do you want to enable Amazon Pinpoint analytics? (y/N)

Enabling the hosting feature with the --prompt will prompt you to confirm hosting and streaming on
CloudFront distribution.

awsmobile hosting enable --prompt

? Do you want to host your web app including a global CDN? (y/N)

Execute awsmobile push after using awsmobile <feature> enable to to update the awsmobile
project in the cloud.

disable

The awsmobile <feature> disable disables the feature in their backend project. Use caution when
disabling a feature. Disabling the feature will delete all the related objects (APIs, Lambda functions,
tables etc). These artifacts can not be recovered locally, even if you re-enable the feature.

awsmobile <feature> disable

The features supported by the AWS Mobile CLI are:

« user-signin (Amazon Cognito)

« user-files (Amazon S3)

« cloud-api (Lambda / API Gateway)
« database (DynamoDB)

« analytics (Amazon Pinpoint)

« hosting °

392

AWS Mobile Developer Guide
AWS Mobile CLI Reference

Use awsmobile push after using awsmobile <feature> disable to update the backend project on
the AWS Mobile Hub project with the disabled features.

configure

The awsmobile <feature> configure configures the objects in the selected feature. The
configuration could mean adding, deleting or updating a particular artifact. This command can be used
only if the specfic feature is already enabled.

awsmobile <feature> configure

The features supported by the AWS Mobile CLI are:

« user-signin (Amazon Cognito)

« user-files (Amazon S3)

« cloud-api (Lambda / API Gateway)

« database (DynamoDB)

« analytics (Amazon Pinpoint)
 hosting (Amazon S3 and CloudFront)

Configuring the user-signin feature will prompt you to change the way it is enabled, configure
advanced settings or disable sign-in feature to the project. Selecting the desired option may prompt you
with further questions.

awsmobile user-signin configure

? Sign-in is currently enabled, what do you want to do next (Use arrow keys)
Configure Sign-in to be required (Currently set to optional)

Go to advance settings

Disable sign-in

Configuring the user-files feature will prompt you to confirm usage of S3 for user files.

awsmobile user-files configure

? This feature is for storing user files in the cloud, would you like to enable it? (Y/n)

Configuring the cloud-api feature will prompt you to create, remove or edit an API related to the
project. Selecting the desired option may prompt you with further questions.

awsmobile cloud-api configure

? Select from one of the choices below. (Use arrow keys)
Create a new API

Remove an API from the project

Edit an API from the project

Configuring the database feature will prompt you to create, remove or edit a table related to the
project. Selecting the desired option may prompt you with further questions.

awsmobile database configure

? Select from one of the choices below. (Use arrow keys)
Create a new table

393

AWS Mobile Developer Guide
AWS Mobile CLI Reference

Remove table from the project
Edit table from the project

Configuring the analytics feature will prompt you to confirm usage of Pinpoint Analytics.

awsmobile analytics configure

? Do you want to enable Amazon Pinpoint analytics? Yes

Configuring the hosting feature will prompt you to confirm hosting and streaming on CloudFront
distribution.

awsmobile hosting configure

? Do you want to host your web app including a global CDN? Yes

Use awsmobile push after using awsmobile <feature> configure to update the backend project
on the AWS Mobile Hub project with the configured features.

invoke

The awsmobile cloud-api invoke invokes the API for testing locally. This helps quickly test
the unsigned API locally by passing the appropritate arguments. This is intended to be used for the
development environment or debugging of your API / Lambda function.

awsmobile cloud-api invoke <apiname> <method> <path> [init]

For example you could invoke the sampleCloudApi post method as shown below

awsmobile cloud-api invoke sampleCloudApi post /items '{"body":{"test-key":"test-value"}}'

The above test will return a value that looks like

{ success: 'post call succeed!’',
url: '/items',
body: { 'test-key': 'test-value' } }

Similarly, you could invoke the sampleCloudApi get method as shown below

awsmobile cloud-api invoke sampleCloudApi get /items

The above test will return a value that looks like

{ success: 'get call succeed!', url: '/items' }

delete

The awsmobile delete command deletes the Mobile hub project in the cloud. Use extra caution
when you decide to execute this command, as it can irrevocably affect your team’s work, the mobile hub
project will be delete and cannot be recovered once this command is executed.

awsmobile delete

394

AWS Mobile Developer Guide
AWS Mobile CLI Credentials

help

The awsmobile help command can be used as a standalone command or the command name that
you need help in can be passed as an argument. This gives the usage information for that command
including any options that can be used with it.

For Example:

awsmobile help
or
awsmobile help init

The --help option detailing at the beginning of this page and the awsmobile help command provide
the same level of detail. The difference is in the usage.

AWS Mobile CLI User Credentials

Overview

As described on the AWS Mobile CLI Get Started (p. 366) page, the first time you set up the CLI you
will be prompted to provide AWS user credentials. The credentials establish permissions for the CLI
to manage AWS services on your behalf. They must belong to an AWS IAM user with administrator
permissions in the account where the CLI is being used.

Permissions

Administrator permissions are granted by an AWS account administrator. If don't have administrator
permissions you will need to ask an administrator for the AWS account to grant them.

If you are the account owner and signed in under the root credentials for the account, then you have,

or can grant yourself, administrator permissions using the AdministratorAccess managed policy.
Best practice is to create a new IAM user under your account to access AWS services instead of using root
credentials.

For more information, see Control Access to Mobile Hub Projects (p. 314).

Get Account User Credentials

If you have administrator permissions, the values you need to provide the CLI are your IAM user's Access
Key ID and a Secret Access Key. If not, you will need to get these from an administrator.

To provide the ID and the Key to AWS CLI, follow the CLI prompts to sign-in to AWS, and provide
a user name and AWS region. The CLI will open the AWS IAM console Add user dialog, with the
AdministratorAccess policy attached, and the Programmatic access option selected by default.

Topics
« Get credentials for a new user (p. 395)
» Get credentials for an existing user (p. 396)

Get credentials for a new user
1. Choose Next: Permissions and then choose Create user.

Alternatively, you could add the user to a group with AdministratorAccess attached.

395

https://console.aws.amazon.com/iam/

AWS Mobile Developer Guide
AWS Mobile CLI Credentials

Add user] ° 3) (4

Set permissions for new-account-user

:.j‘ Add user to group Copy permissions from E Attach existing policies
)

existing user directly

Attach one or more existing policies directly to the users or create a new policy. Learn more

Create policy < Refresh

Showing 347 results

Filter: Policy type ~ Q¢

Attachments ~ Description

s » ¥ AdministratorAccess Job function 5 Provides full access to AWS services and resources.

W 0 Provide device setup access to AlexaForBusiness ser...
» 7] AlexaForBusinessFull... AWS managed 0 Grants full access to AlexaForBusiness resources and ...
» WP AlexaForBusinessGat... AWS managed 0 Provide gateway execution access to AlexaForBusine...
» NI AlexaForBusinessRea... AWS managed 0 Provide read only access to AlexaForBusiness services
® BH Arnnean ADIRabamr AWT mananand n Prewiidae full anrace tn rraataladit/dalata APle in Ama

2. Choose Create user.

3. Copy the values from the table displayed, or choose Download .csv to save the values locally, and
then type them into the prompts.

Add user 12 3 o

©® Success
You successfully created the users shown below. You can view and download user security credentials. You can also email users
instructions for signing in to the AWS Management Console. This is the last time these credentials will be available to download.
However, you can create new credentials at any time.

Users with AWS Management Console access can sign-in at: https://367278834079.signin.aws.amazon.com/console

& Download .csv

Access key ID

Secret access key

* Show

AKIAIMXYKSRSUVBGK3ZA HBY2hG7M/eBfndcc1exU+INgxLore

/m5RAQXETS9 Hide

Close

For more detailed steps, see add a new account user with administrator permissions (p. 315).
Get credentials for an existing user

1. Choose cancel.

2. On the left, choose Users, then select the user from the list. Choose Security credentials, then choose
Create access key.

396

AWS Mobile Developer Guide
Get Started

AWS Amplify Library for React
Native

AWS Amplify is an open source JavaScript library for frontend and mobile developers building cloud-
enabled applications. The library is a declarative interface across different categories of operations in
order to make common tasks easier to add into your application. The default implementation works with
Amazon Web Services (AWS) resources but is designed to be open and pluggable for usage with other
cloud services that wish to provide an implementation or custom backends.

The AWS Mobile CLI, built on AWS Mobile Hub, provides a command line interface for frontend
JavaScript developers to seamlessly enable and configure AWS services into their apps. With minimal
configuration, you can start using all of the functionality provided by the AWS Mobile Hub from your
favorite terminal application.

Topics
o Get Started (p. 397)
o AWS Mobile Hub Features (p. 410)

Get Started

Overview

The AWS Mobile CLI provides a command line experience that allows frontend JavaScript developers to
quickly create and integrate AWS backend resources into their mobile apps.

Prerequisites

1. Sign up for the AWS Free Tier to learn and prototype at little or no cost.
2. Install Node.js with NPM.
3. Install the AWS Mobile CLI

npm install --global awsmobile-cli

4. Configure the CLI with your AWS credentials

To setup permissions for the toolchain used by the CLI, run:

awsmobile configure

If prompted for credentials, follow the steps provided by the CLI. For more information, see Provide
IAM credentials to AWS Mobile CLI (p. 395).

Set Up Your Backend

Need to create a quick sample React Native app? See Create a React Native App.

397

https://aws.github.io/aws-amplify/
https://aws.amazon.com/free/
https://nodejs.org/en/download/
https://facebook.github.io/react-native/docs/getting-started.html

AWS Mobile Developer Guide
Connect to Your Backend

To configure backend features for your app

1. In the root folder of your app, run:

awsmobile init

The init command creates a backend project for your app. By default, analytics and web hosting
are enabled in your backend and this configuration is automatically pulled into your app when you
initialize.

2. When prompted, provide the source directory for your project. The CLI will generate aws-
exports. js in this location. This file contains the configuration and endpoint metadata used to link
your frontend to your backend services.

? Where is your projects's source directory: /

Then respond to further prompts with the following values.

Please tell us about your project:

? Where is your project's source directory: /

? Where is your project's distribution directory that stores build artifacts: build
? What is your project's build command: npm run-script build

? What is your project's start command for local test run: npm run-script start

Connect to Your Backend

AWS Mobile uses the open source AWS Amplify library to link your code to the AWS features configured
for your app.

To connect the app to your configured AWS services

1. Install AWS Amplify for React Native library.

npm install --save aws-amplify

2. In App. js (or in other code that runs at launch-time), add the following imports.

import Amplify from 'aws-amplify';

import aws_exports from './YOUR-PATH-TO/aws-exports';

3. Then add the following code.

Amplify.configure(aws_exports);

Run Your App Locally

Your app is now ready to launch and use the default services configured by AWS Mobile.
To launch your app locally

Use the command native to the React Native tooling you are using. For example, if you made your app
using create-react-native-app then run:

npm run android

398

https://github.com/aws/aws-amplify

AWS Mobile Developer Guide
Next Steps

OR

npm run ios

Anytime you launch your app, app usage analytics are gathered and can be visualized (p. 399) in an
AWS console.

AWS Free Tier Initializing your app or adding features through
the CLI will cause AWS services to be configured
on your behalf. The pricing for AWS Mobile
services enables you to learn and prototype at
little or no cost using the AWS Free Tier.

Next Steps
Add Features

Add the following AWS Mobile features to your mobile app using the CLI.

o Analytics (p. 399)

» User Sign-in (p. 401)

« NoSQL Database (p. 402)
» User File Storage (p. 406)
o Cloud Logic (p. 408)

Learn more

To learn more about the commands and usage of the AWS Mobile CLI, see the AWS Mobile CLI
reference (p. 386).

Learn about AWS Mobile Amplify.

Add Analytics

BEFORE YOU BEGIN The steps on this page assume you have already
completed the steps on Get Started (p. 397).

Basic Analytics Backend is Enabled for Your App

When you complete the AWS Mobile CLI setup and launch your app, anonymized session and device
demographics data flows to the AWS analytics backend.

To send basic app usage analytics to AWS

Launch your app locally, for instance, if you created your app using create-react-native-app, by
running:

npm run android

399

https://aws.amazon.com/mobile/pricing
https://aws.amazon.com/mobile/pricing
https://aws.amazon.com/free
https://aws.github.io/aws-amplify

AWS Mobile Developer Guide
Add Analytics

Or

npm run ios

When you use your app the Amazon Pinpoint service gathers and visualizes analytics data.
To view the analytics using the Amazon Pinpoint console

1. Launch your app at least once.
2. Open your project in the AWS Mobile Hub console.

awsmobile console

3. Choose the Analytics icon on the left, to navigate to your project in the Amazon Pinpoint console.
4. Choose Analytics on the left.

You should see an up-tick in several graphs.

Add Custom Analytics to Your App

You can configure your app so that Amazon Pinpoint gathers data for custom events that you register
within the flow of your code.

To instrument custom analytics in your app

In the file containing the event you want to track, add the following import:

import { Analytics } from 'aws-amplify';

Add the a call like the following to the spot in your JavaScript where the tracked event should be fired:

componentDidMount() {
Analytics.record('FIRST-EVENT-NAME');
¥

Or to relevant page elements:

handleClick = () => {
Analytics.record('SECOND-EVENT-NAME');
¥

<Button title="Record event" onPress={this.handleClick}/>

To test:

1. Save the changes and launch your app. Use your app so that tracked events are triggered.
2. In the Amazon Pinpoint console, choose Events near the top.
3. Select an event in the Event dropdown menu on the left.

Custom event data may take a few minutes to become visible in the console.

Next Steps

Learn more about the analytics in AWS Mobile which are part of the Messaging and Analytics (p. 340)
feature. This feature uses Amazon Pinpoint.

400

http://docs.aws.amazon.com/pinpoint/latest/developerguide/
https://console.aws.amazon.com/mobilehub/
https://console.aws.amazon.com/pinpoint/
http://docs.aws.amazon.com/pinpoint/latest/developerguide/
https://console.aws.amazon.com/pinpoint/
http://docs.aws.amazon.com/pinpoint/latest/developerguide/welcome.html

AWS Mobile Developer Guide
Add User Sign-in

Learn about AWS Mobile CLI (p. 386).

Learn about the AWS Amplify for React Native library.

Add Auth / User Sign-in

BEFORE YOU BEGIN The steps on this page assume you have already
completed the steps on Get Started (p. 397).

Set Up Your Backend

The AWS Mobile CLI components for user authentication include a rich, configurable Ul for sign-up and
sign-in.

To enable the Auth features

In the root folder of your app, run:

awsmobile user-signin enable

awsmobile push

Connect to Your Backend

The AWS Mobile CLI enables you to integrate ready-made sign-up/sign-in/sign-out Ul from the
command line.

To add user auth Ul to your app

1. Install AWS Amplify for React Nativelibrary.

npm install --save aws-amplify
npm install --save aws-amplify-react-native

Note If your react-native app was not created using
create-react-native-app or using a version
of Expo lower than v25.0.0 (the engine behind
create-react-native-app), you will need to
link libraries in your project for the Auth module
on React Native, amazon-cognito-identity-
js.

To link to the module, you must first eject the
project:

npm run eject
react-native link amazon-cognito-identity-
js

1. Add the following import in App. js (or other file that runs upon app startup):

401

https://aws.github.io/aws-amplify

AWS Mobile Developer Guide
Add NoSQL Database

import { withAuthenticator } from 'aws-amplify-react-native';

2. Then change export default App; to the following.

export default withAuthenticator(App);

To test, run npm start or awsmobile run.

Next Steps

Learn more about the AWS Mobile User Sign-in (p. 348) feature, which uses Amazon Cognito.
Learn about AWS Mobile CLI (p. 386).

Learn about AWS Mobile Amplify.

Access Your Database

BEFORE YOU BEGIN The steps on this page assume you have already
completed the steps on Get Started (p. 397).

Set Up Your Backend

AWS Mobile database feature enables you to create tables customized to your needs. The CLI then
guides you to create a custom API to access your database.

Create a table

To specify and create a table

1. In your app root folder, run:

awsmobile database enable --prompt

2. Design your table when prompted by the CLI.

The CLI will prompt you for the table and other table configurations such as columns.

Welcome to NoSQL database wizard
You will be asked a series of questions to help determine how to best construct your
NoSQL database table.

? Should the data of this table be open or restricted by user? Open
? Table name Notes

You can now add columns to the table.

What would you like to name this column NoteId
Choose the data type string

Would you like to add another column Yes

What would you like to name this column NoteTitle
Choose the data type string

R I I)

402

http://docs.aws.amazon.com/cognito/latest/developerguide/welcome.html
https://aws.github.io/aws-amplify

AWS Mobile Developer Guide
Add NoSQL Database

Would you like to add another column Yes

What would you like to name this column NoteContent
Choose the data type string

Would you like to add another column No

AR INRAVINESV IR]

Choose a Primary Key that will uniquely identify each item. Optionally, choose a column to be a Sort
Key when you will commonly use those values in combination with the Primary Key for sorting or
searching your data. You can additional sort keys by adding a Secondary Index for each column you
will want to sort by.

Before you create the database, you must specify how items in your table are uniquely
organized. This is done by specifying a Primary key. The primary key uniquely identifies
each item in the table, so that no two items can have the same key.

This could be and individual column or a combination that has "primary key" and a "sort
key".

To learn more about primary key:

http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/

HowItWorks.CoreComponents.html#HowItWorks.CoreComponents.PrimaryKey

? Select primary key NoteId
? Select sort key (No Sort Key)

You can optionally add global secondary indexes for this table. These are useful when
running queries defined by a different column than the primary key.

To learn more about indexes:

http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/
HowItWorks.CoreComponents.html#HowItWorks.CoreComponents.SecondaryIndexes

? Add index No
Table Notes added

Create a CRUD API

AWS Mobile will create a custom API for your app to perform create, read, update, and delete (CRUD)
actions on your database.

To create a CRUD API for your table

1. In the root folder of your app, run:

awsmobile cloud-api enable --prompt

2. When prompted, choose Create CRUD API for existing Dynamo table, select the table name
from the previous steps, choose the access permissions for the table. Using the example table from
the previous section:

? Select from one of the choices below.
Create a new API
Create CRUD API for an existing Amazon DynamoDB table

The prompt response will be:

Path to be used on API for get and remove an object should be like:
/Notes/object/:NotelId

Path to be used on API for list objects on get method should be like:

403

http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/HowItWorks.CoreComponents.html#HowItWorks.CoreComponents.PrimaryKey
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/HowItWorks.CoreComponents.html#HowItWorks.CoreComponents.SecondaryIndexes

AWS Mobile Developer Guide
Add NoSQL Database

/Notes/:Noteld

JSON to be used as data on put request should be like:

{
"NoteTitle": "INSERT VALUE HERE",
"NoteContent": "INSERT VALUE HERE",
"NoteId": "INSERT VALUE HERE"

¥

To test the api from the command line (after awsmobile push) use this commands
awsmobile cloud-api invoke NotesCRUD <method> <path> [init]
Api NotesCRUD saved

Copy and keep the path of your API and the JSON for use in your app code.

This feature will create an API using Amazon APl Gateway and AWS Lambda. You can optionally have
the lambda function perform CRUD operations against your Amazon DynamoDB table.

3. Update your backend.

To create the API you have configured, run:

awsmobile push

Until deployment of API to the cloud the has completed, the CLI displays the message: cloud-api
update status: CREATE_IN PROGRESS. Once deployed a sucessful creation message cloud-api
update status: CREATE_COMPLETE is displayed.

You can view the API that the CLI created by running awmobile console and then choosing Cloud
Logic in the Mobile Hub console.

Connect to Your Backend

Topics
« Save an item (create or update) (p. 405)
« Get a specific item (p. 405)
o Delete an item (p. 253)
« Ul to exercise CRUD calls (p. 406)

To access to database tables from your app

1. In App. js import the following.

import Amplify, { API } from 'aws-amplify';
import aws_exports from 'path_to_your_ aws-exports';
Amplify.configure(aws_exports);

2. Add the following state to your component.

state = {
apiResponse: null,
noteId: ''
}i

handleChangeNoteId = (event) => {
this.setState({noteId: event});

404

AWS Mobile Developer Guide
Add NoSQL Database

Save an item (create or update)
To save an item
In the part of your app where you access the database, such as an event handler in your React

component, call the put method. Use the JSON and the root path (/Notes) of your API that you copied
from the CLI prompt response earlier.

// Create a new Note according to the columns we defined earlier
async saveNote() {
let newNote = {
body: {
"NoteTitle": "My first note!",
"NoteContent": "This is so cool!",
"NoteId": this.state.noteIld
}

}
const path = "/Notes";

// Use the API module to save the note to the database

try {
const apiResponse = await API.put("NotesCRUD", path, newNote)
console.log("response from saving note: " + apiResponse);

this.setState({apiResponse});
} catch (e) {
console.log(e);

To use the command line to see your saved items in the database run:

awsmobile cloud-api invoke NotesCRUD GET /Notes/object/${noteId}

Get a specific item
To query for a specific item

Call the get method using the API path (copied earlier) to the item you are querying for.

// noteId is the primary key of the particular record you want to fetch
async getNote() {

const path = "/Notes/object/" + this.state.noteld;

try {
const apiResponse = await API.get("NotesCRUD", path);
console.log("response from getting note: " + apiResponse);
this.setState({apiResponse});

} catch (e) {
console.log(e);

Delete an item
To delete an item

Add this method to your component. Use your API path (copied earlier).

// noteId is the NoteId of the particular record you want to delete

405

AWS Mobile Developer Guide
Add User File Storage

async deleteNote() {

const path = "/Notes/object/" + this.state.noteId;

try {
const apiResponse = await API.del("NotesCRUD", path);
console.log("response from deleteing note: " + apiResponse);
this.setState({apiResponse});

} catch (e) {
console.log(e);

Ul to exercise CRUD calls

The following is and example of how you might construct Ul to excercise these operations.

<View style={styles.container}>
<Text>Response: {this.state.apiResponse &&
JSON.stringify(this.state.apiResponse)}</Text>
<Button title="Save Note" onPress={this.saveNote.bind(this)} />
<Button title="Get Note" onPress={this.getNote.bind(this)} />
<Button title="Delete Note" onPress={this.deleteNote.bind(this)} />
<TextInput style={styles.textInput} autoCapitalize='none'
onChangeText={this.handleChangeNoteId}/>
</View>

const styles = StyleSheet.create({
container: ({
flex: 1,
backgroundColor: '#fff',
alignItems: 'center',
justifyContent: 'center',
}l
textInput: {
margin: 15,
height: 30,
width: 200,
borderwidth: 1,
color: 'green',
fontSize: 20,
backgroundColor: 'black'
}
i

Next Steps

Learn more about the AWS Mobile NoSQL Database (p. 335) feature, which uses Amazon DynamoDB.
Learn about AWS Mobile CLI (p. 386).

Learn about AWS Mobile Amplify.

Add Storage

BEFORE YOU BEGIN The steps on this page assume you have already
completed the steps on Get Started (p. 397).

The AWS Mobile CLI User File Storage (p. 353) feature enables apps to store user files in the cloud.

406

http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Introduction.html
https://github.com/aws/aws-amplify/tree/master/packages/aws-amplify-react-native

AWS Mobile Developer Guide
Add User File Storage

Set Up Your Backend

To configure your app's cloud storage location

In your app root folder, run:

awsmobile user-files enable

awsmobile push

Connect to Your Backend
To add User File Storage to your app
In your component where you want to transfer files:

Import the Storage module from aws-amplify and configure it to communicate with your backend.

import { Storage } from 'aws-amplify';

Now that the Storage module is imported and ready to communicate with your backend, implement
common file transfer actions using the code below.

Upload a file

To upload a file to storage

Add the following methods to the component where you handle file uploads.

async uploadFile() {
let file = 'My upload text';
let name = 'myFile.txt';
const access = { level: "public" }; // note the access path
Storage.put(name, file, access);

Get a specific file
To download a file from cloud storage

Add the following code to a component where you display files.

async getFile() {
let name = 'myFile.txt';
const access = { level: "public" };
let fileUrl = await Storage.get(name, access);
// use fileUrl to get the file

List all files

To list the files stored in the cloud for your app

Add the following code to a component where you list a collection of files.

407

AWS Mobile Developer Guide
Add Cloud Logic

async componentDidMount() {
const path = this.props.path;
const access = { level: "public" };
let files = await Storage.list(path, access);
// use file list to get single files

Use the following code to fetch file attributes such as the size or time of last file change.

file.Size; // file size
file.LastModified.toLocaleDateString(); // last modified date
file.LastModified.toLocaleTimeString(); // last modified time

Delete a file

Add the following state to the element where you handle file transfers.

async deleteFile(key) {
const access = { level: "public" };
Storage.remove(key, access);

¥

Next Steps

Learn more about the analytics in AWS Mobile which are part of the User File Storage (p. 353) feature.
This feature uses Amazon Simple Storage Service (S3).

Learn about AWS Mobile CLI (p. 386).

Learn about AWS Mobile Amplify.

Access Your APIs

BEFORE YOU BEGIN The steps on this page assume you have already
completed the steps on Get Started (p. 397).

Set Up Your Backend

The AWS Mobile Cloud Logic (p. 332) feature lets you call APIs in the cloud. API calls are handled by your
serverless Lambda functions.

To enable cloud APIs in your app

awsmobile cloud-api enable

awsmobile push

Enabling Cloud Logic in your app adds a sample API, sampleCloudApi to your project that can be used
for testing.

You can find the sample handler function for the API by running awsmobile console in your app root
folder, and then choosing the Cloud Logic feature in your Mobile Hub project.

408

http://docs.aws.amazon.com/s3/latest/developerguide/welcome.html
https://aws.github.io/aws-amplify

AWS Mobile Developer Guide
Add Cloud Logic

Cloud Logic

Create and test mobile cloud APls connected to business logic functions you develop, all without managing servers or paying for unused
capacity. Use these functions to securely extend your mobile app and connect to a range of AWS services or your own on-premises
resources. Integrate your mobile app with your cloud APIs using either the quickstart app (as an example} or the mobile app SDK; both are
custom-generated to match your APls. Show more...

APl Name Type Description

SampleCloudLogicAPl m Test APl Actions ~ X%

) Configure API
Import existing API | —.

EDIT BACKEND CODE
' sampleLambda ’

T —
Your API(s) have been deployed.

® CREATE COMPLETE

Quickly Test Your APl From the CLI

The sampleCloudApi and its handler function allow you to make end to end API calls.

To test invocation of your unsigned APIs in the development environment

awsmobile cloud-api invoke <apiname> <method> <path> [init]

For the sampleCloudApi you may use the following examples to test the post method

awsmobile cloud-api invoke sampleCloudApi post /items '{"body": {"testKey":"testValue"}}'

This call will return a response similar to the following.

{ success: 'post call succeed!’',
url: '/items',
body: { testKey: 'testValue' } }

To test the :get method

awsmobile cloud-api invoke sampleCloudApi get /items

This will return a response as follows.

{ success: 'get call succeed!', url: '/items' }

Connect to Your Backend

Once you have created your own Cloud Logic (p. 332) APIs and Lambda functions, you can call them
from your app.

To call APIs from your app

409

AWS Mobile Developer Guide
Reference

AWS

In App. js (or other code that runs at launch-time), add the following import.

import Amplify, { API } from 'aws-amplify';
import aws_exports from './aws-exports';
Amplify.configure(aws_exports);

Then add this to the component that calls your API.

state = { apiResponse: null };

async getSample() {

const path = "/items"; // you can specify the path
const apiResponse = await API.get("sampleCloudApi" , path); //replace the API name
console.log('response:' + apiResponse);
this.setState({ apiResponse });

}

To invoke your API from a Ul element, add an API call from within your component's render () method.

<View>

<Button title="Send Request" onPress={this.getSample.bind(this)} />

<Text>Response: {this.state.apiResponse && JSON.stringify(this.state.apiResponse)}</
Text>
</View>

To test, save the changes, run npm run android ornpm run ios~ to launch your app. Then try the Ul
element that calls your API.

Next Steps

Learn more about the AWS Mobile Cloud Logic (p. 332) feature which uses Amazon API Gateway and
AWS Lambda.

To be guided through creation of an API and it's handler, run awsmobile console to open your app in
the Mobile Hub console, and choose Cloud Logic.

Learn about AWS Mobile CLI (p. 386).

Learn about AWS Mobile Amplify.

Mobile Hub Features

The following pages contain reference material for the AWS Mobile CLI for Web (JavaScript).

o AWS Mobile CLI Reference (p. 386)
o AWS Mobile CLI Credentials (p. 395)

410

http://docs.aws.amazon.com/apigateway/latest/developerguide/welcome.html
http://docs.aws.amazon.com/lambda/latest/dg/welcome.html
https://aws.github.io/aws-amplify/

	AWS Mobile
	Table of Contents
	What is AWS Mobile?
	Cloud enable your app in minutes

	AWS Mobile for Android and iOS
	Get Started
	Overview
	Set Up Your Backend
	Connect to Your Backend
	Next Steps
	Add Analytics to your Mobile App with Amazon Pinpoint
	Overview
	Set up your Backend
	Connect to your Backend
	Add Analytics
	Monitor Analytics

	Enable Custom App Analytics
	Enable Revenue Analytics

	Add User Sign-in to Your Mobile App with Amazon Cognito
	Set Up Your Backend
	Setup Email & Password Login in your Mobile App
	Setup Facebook Login in your Mobile App
	Setup Google Login in your Mobile App
	Enable Sign-out
	Next Steps

	Add Push Notifications to Your Mobile App with Amazon Pinpoint
	Overview
	Set Up Your Backend
	Connect to your backend
	Add Amazon Pinpoint Targeted and Campaign Push Messaging

	Add NoSQL Database to Your Mobile App with Amazon DynamoDB
	Overview
	Set Up Your Backend
	Connect to your backend
	Perform CRUD Operations
	Using the Data Model
	Create (Save) an Item
	Read (Load) an Item
	Update an Item
	Delete an Item

	Perform a Query

	Add User File Storage to Your Mobile App with Amazon S3
	Overview
	Set Up Your Backend
	Connect to Your Backend
	Upload a File
	Download a File
	Next Steps

	Add Cloud APIs to Your Mobile App with Amazon API GateWay and AWS Lambda
	Cloud Logic Overview
	Set Up Your Backend
	Connect to Your Backend

	Add Messaging to Your Mobile App with Amazon Pinpoint
	Overview
	Set Up Your Backend
	Connect to your backend

	Add Conversational Bots to Your Mobile App with Amazon Lex
	Overview
	Set Up Your Backend
	Connect to your backend

	Tutorials
	Notes App Tutorial
	A Simple Note-taking App
	Getting Started
	Windows Specific Instructions
	Mac Specific Instructions

	Download the Source code
	Compile the Source Code
	Run the Project in an Emulator
	Running into Problems
	Next Steps
	Add Analytics to the Notes App
	Set Up Your Back End
	Add Permissions to the AndroidManifest.xml
	Add AWS SDK for Android library
	Integrate the AWS Configuration File
	Create an AWSProvider.java Singleton Class
	Update the Application Class
	Update the ActivityLifeCycle Class
	Monitor Add and Delete Events in Amazon Pinpoint
	Run the Project and Validate Results
	Next steps

	Add Authentication to the Notes App
	Set Up Your Backend
	Connect to Your Backend
	Add the Authentication UI Library
	Register the Email and Password Sign-in Provider
	Add a AuthenticatorActivity to the project
	Update the AndroidManifest.xml
	Run the project and validate results
	Next steps

	Add Online Data Access to the Notes App
	Add a NoSQL database to the AWS Mobile Hub project
	Connect to Your Backend
	Download the Models
	Add required libraries to the project
	Add Data access methods to the AWSProvider class
	Implement Mutation Methods
	Implement Query Methods
	Convert the CRUD methods to Async
	Run the application
	Next Steps

	A Simple Note-taking App
	Getting Started
	Download the Source code
	Compile and Run the Project
	Next Steps
	Add Analytics to the Notes App
	Set Up Your Back End
	Connect to Your Backend
	Add Analytics the Dependencies
	Initialize Amazon Pinpoint to Enable Analytics
	Run the App and Validate Results
	Add Custom Analytics
	View Your Custom Analytics
	Next steps

	Add Authentication to the Notes App
	Setup Your Backend
	Add User Sign-in to the AWS Mobile Hub Project
	Connect to Your Backend
	Add Auth Dependencies
	Create an AWSMobileClient and Initialize the SDK
	Implement Your Sign-in UI
	Run the App and Validate Results
	Next steps

	Add Online Data Access to the Notes App
	Set Up Your Backend
	Add a NoSQL Database to the AWS Mobile Hub Project
	Connect to Your Backend
	Download the Models
	Add NoSQL Data Dependencies
	Implement Mutation Methods
	Implement Query Methods
	Add Data Access Calls
	Run the App and Validate Results
	Next Steps

	AWS Mobile Android and iOS How To
	How To: AWS Mobile SDK Setup Options
	Android: Setup Options for the SDK
	Prerequisites
	Step 1: Get the AWS Mobile SDK for Android
	Option 1: Using Gradle with Android Studio
	Option 2: Import the JAR Files
	Option 3: Using Maven
	pom.xml Example

	Step 2: Set Permissions in Your Manifest
	Step 3: Get AWS Credentials
	Next Steps

	iOS: Setup Options for the SDK
	Include the AWS Mobile SDK for iOS in an Existing Application
	Update the SDK to a Newer Version
	Logging

	Changing Logging Level
	Targeting Log Output
	Sample Apps
	Install the Reference Documentation in Xcode

	To install the DocSet for Xcode
	Next Steps

	How To: User Sign-in with Amazon Cognito
	How to Integrate Your Existing Identity Pool
	Set Up Your Backend
	Import or Create a New Identity Pool

	Connect to Your Backend
	Create the awsconfiguration.json file
	Add the awsconfiguration.json file to your app
	Add the SDK to your App

	Next Steps

	Sign-out a Signed-in User
	Enable User Sign-out

	Set Up Facebook Authentication
	Set Up Google Authentication
	Create a Google Developers Project and OAuth Web Client ID
	To create a Google Developers project and OAuth web client ID

	Create an OAuth Android Client ID
	To create an OAuth Android client ID

	Create an OAuth iOS Client ID
	To create an OAuth iOS client ID

	Verify All Platform Client IDs

	Setting Up Custom Authentication
	Customize the SDK Sign-In UI

	How To: File Storage with Amazon S3
	How to Integrate Your Existing Bucket
	Set Up Your Backend
	Create or Import the Amazon Cognito Identity Pool
	Set up the required Amazon IAM permissions
	Get Your Bucket Name and ID

	Connect to Your Backend
	Create the awsconfiguration.json file
	Add the awsconfiguration.json file to your app
	Add the SDK to your App

	Implement Storage Operations
	Upload a File
	Download a File

	Next Steps

	Transfer Files and Data Using TransferUtility and Amazon S3
	Upload a File
	Download a File
	Track Transfer Progress
	Pause a Transfer
	Resume a Transfer
	Cancel a Transfer
	Background Transfers
	Advanced Transfer Methods
	Transfer with Object Metadata
	Transfer with Access Control List
	Transfer Utility Options

	More Transfer Examples
	Downloading to a File
	Uploading Binary Data to a File
	Downloading Binary Data to a File

	Limitations

	Amazon S3 Pre-Signed URLs: For Background Transfer
	Pre-Signed URLs
	Build a Pre-Signed URL
	Additional Resources

	Amazon S3 Server-Side Encryption Support in iOS
	Additional Resources

	iOS: Amazon S3 TransferManager for iOS
	Setup
	1. Setup the SDK, Credentials and Services
	2. Import the SDK Amazon S3 APIs
	3. Create the TransferManager Client
	Transfer an Object
	1. Create an AWSS3TransferManagerDownloadRequest
	2. Pass the Request to the download: Method
	3. Displaying a Downloaded Image in an UIImageView

	Pause, Resume, and Cancel Object Transfers
	Use continueWith Block to Handle Results
	Pause a Transfer
	Resume a Transfer
	Cancel a Transfer
	Pause All Transfers
	Resume All Transfers
	Cancel All Transfers

	Track Progress
	Upload Progress
	Download Progress

	Multipart Upload
	Additional Resources

	How To: NoSQL Database with Amazon DynamoDB
	Integrate Your Existing NoSQL Table
	Set up Your Backend
	Create an New Table and Index
	Set Up an Identity Pool
	Set Permissions
	Apply Permissions

	Connect to Your Backend
	Create Your AWS Configuration File
	Add the AWS Config File
	Add the SDK to your App
	Add Data Models to Your App

	Perform CRUD Operations
	Create (Save) an Item
	Read (Load) an Item
	Update an Item
	Delete an Item

	Perform a Query
	Next Steps

	iOS: Amazon DynamoDB Object Mapper API
	Overview
	Setup
	Setup the SDK, Credentials, and Services

	Instantiate the Object Mapper API
	Import the AWSDynamoDB APIs
	Create Amazon DynamoDB Object Mapper Client
	Define a Mapping Class

	CRUD Operations
	Save an Item
	Save Behavior Options

	Retrieve an Item
	Update an Item
	Delete an Item

	Perform a Scan
	Perform a Query
	Additional Resources

	iOS: Amazon DynamoDB Low-level Client
	Overview
	Setup
	1. Setup the SDK, Credentials, and Services
	2. Create or Use an Existing Amazon DynamoDB Table
	3. Import the AWSDynamoDB APIs

	Conditional Writes Using the Low-Level Client
	Batch Operations Using the Low-Level Client
	Additional Resources

	How To: Serverless Code with AWS Lambda
	Android: Execute Code On Demand with AWS Lambda
	Overview
	Setup
	Prerequisites
	Create a Lambda Function in the AWS Console
	Set IAM Permissions
	Set Permissions in Your Android Manifest

	Initialize LambdaInvokerFactory
	Declare Data Types
	Create a Lambda proxy
	Invoke the Lambda Function

	iOS: Execute Code On Demand with AWS Lambda
	Overview
	Setup
	Invoking an AWS Lambda Function
	Import AWS Lambda API
	Call lambdaInvoker
	Using function returns
	Handling service execution errors
	Comprehensive example

	Client Context
	Identity Context

	How To Add Natural Language Understanding with Amazon Lex
	Android: Use Natural Language with Amazon Lex
	Overview
	Setting Up
	Include the SDK in Your Project
	Set Permissions in Your Android Manifest
	Declare Amazon Lex as a Gradle dependency

	Set IAM Permissions for Amazon Lex
	Configure a Bot

	Implement Text and Voice Interaction with Amazon Lex
	Get AWS User Credentials
	Integrate Lex Interaction Client
	Initialize Your Lex Interaction Client
	Begin or Continue a Conversation
	Interaction Response Events
	Microphone Events
	Audio Playback Events

	Add Voice Interactons
	Add a voice-component Layout Element to Your Activity
	Initialize Your Voice Activity

	iOS: Use Natural Language with Amazon Lex
	Overview
	Setting Up
	Include the SDK in Your Project
	Set IAM Permissions for Amazon Lex
	Configure a Bot

	Implement Text and Voice Interaction with Amazon Lex
	Add Permissions and Get Credentials
	Add permission to use the microphone

	Integrating the Interaction Client
	Initialize the InteractionKit for voice and text
	Implement InteractionKit delegate methods
	Begin or Continue a Conversation

	Integrating Voice Conversation
	Add a voice button and bind it to the Lex SDK UI component

	Convert Text to Speech with Amazon Polly
	What is Amazon Polly?

	How To Stream Data with Amazon Kinesis
	Android: Process Data Streams with Kinesis
	Overview
	What is Kinesis Data Firehose?

	Getting Started
	Create an Identity Pool
	Set IAM Permissions (Amazon Kinesis)
	Set IAM Permissions (Amazon Kinesis Firehose)
	Include the SDK in Your Project
	Set Permissions in Your Android Manifest
	Add Import Statements

	Instantiate a Kinesis recorder
	Storage limits

	Use KinesisFirehoseRecorder

	ios: Process Data Streams with Amazon Kinesis
	Overview
	What is Amazon Kinesis?
	What is Amazon Kinesis Firehose?
	Integrating Amazon Kinesis and Amazon Kinesis Firehose

	How To: Sync Data with Amazon Cognito Sync
	Android: Sync Data with Amazon Cognito Sync
	Overview
	Set Up the SDK
	Initialize the CognitoSyncManager
	Syncing User Data
	Create a Dataset and Add User Data
	Synchronize Dataset with the Cloud

	iOS: Sync Data with Amazon Cognito Sync
	Authenticate Users with Amazon Cognito Identity
	Syncing User Data
	Create a Dataset and Add User Data
	Synchronize Dataset with the Cloud

	How To Add Machine Learning with Amazon Machine Learning
	Android: Amazon Machine Learning
	Setup
	Prerequisites
	Granting Access to Amazon Machine Learning Resources
	Add Import Statements

	Initialize AmazonMachineLearningClient
	Create an Amazon Machine Learning Client
	Making a Predict Request

	iOS: Amazon Machine Learning
	Integrate Amazon Machine Learning
	Configure Credentials
	Create an Amazon Machine Learning Client
	Making a Predict Request

	How To For Platform Specific Tasks
	iOS: Working with Asynchronous Tasks
	Using completionHandler
	Handling Asynchronous Method Returns with completionHandler

	Using AWSTask
	Handling Asynchronous Method Returns with AWSTask
	Handling Errors with AWSTask
	Consolidated Error Logic with AWSTask
	Per Method Error Logic with AWSTask

	Returning AWSTask or nil
	Executing Multiple Tasks with AWSTask
	In Sequence
	In Parallel

	Executing a Block on the Main Thread with AWSTask
	Grand Central Dispatch
	AWSExecutor

	iOS: Preparing Your App to Work with ATS
	Diagnosing ATS Conflicts
	Mitigating ATS Connection Issues

	AWS Mobile Reference
	Android and iOS API References
	Amazon S3 Security Considerations for Mobile Hub Users
	Access management
	Object Lifecycle Management
	Object Encryption
	Object Versioning
	Bucket Logging

	Amazon CloudFront Security Considerations for Mobile Hub Users
	Access management
	Requiring the HTTPS Protocol
	Securing Private Content
	Distribution Access Logging

	AWS Mobile Reference
	AWS Identity and Access Management Usage in AWS Mobile Hub
	Mobile Hub Project Permissions Model
	Mobile Hub Permissions Model
	What if I Currently Use MobileHub_Service_Role to Grant Mobile Hub Permissions?
	Why Did the Permissions Model Change?

	Control Access to Mobile Hub Projects
	Overview
	Best Practice: Create IAM Users to Access AWS
	Grant Users Permissions to Mobile Hub Projects
	Create a New IAM User in Your Account and Grant Mobile Hub Permissions
	Create an IAM Group
	Grant Mobile Hub Permissions to an Existing Account User

	Use AWS Organizations to Manage Permissions
	AWS Managed (Predefined) Policies for Mobile Hub Project Access

	IAM Authentication and Access Control for Mobile Hub
	Authentication
	Access Control

	Overview of Access Permissions Management for Mobile Hub Projects
	Understanding Resource Ownership for AWS Mobile Hub
	Managing Access to Resources
	Identity-Based Policies (IAM Policies)
	Resource-Based Policies

	Specifying Policy Elements: Actions, Effects, Resources, and Principals

	Exporting and Importing AWS Mobile Hub Projects
	Overview
	Sharing Your Project Configuration with a Deploy to AWS Mobile Hub Link
	Limitations of Importing Projects
	Maximum Project Definition File Size is 10MB
	Project Components that Require Manual Export
	Cross Account Credentials
	Project Components that Are Not Exported

	Mobile Hub Project Export Format
	Structure of a Project Export .zip File
	Structure of a Project Export .yml File

	Manually Exported Project Components
	Importing User File Storage Contents
	Importing Hosting and Streaming Contents
	Importing SAML Federated User Sign-in
	Importing API Handlers for Cloud Logic APIs
	Importing Cross-Origin Resource Sharing (CORS) Configuration

	AWS Mobile Hub Features
	Cloud Logic
	Feature Details
	Cloud Logic At a Glance
	Viewing AWS Resources Provisioned for this Feature
	Quickstart App Details

	NoSQL Database
	Feature Details
	NoSQL Database At a Glance
	Configuring the NoSQL Database Feature
	Example Table Schemas

	Configuring Your Tables
	NoSQL Table Terminology
	Data Permissions
	Grant Permissions Only to Authenticated Users
	Grant Permissions to Table Data Items Per User
	Managing Permissions to Restricted Items for Multiple Writers

	Retrieving Data
	Viewing AWS Resources Provisioned for this Feature
	Quickstart App Details

	Messaging and Analytics
	Feature Details
	Messaging and Analytics At a Glance

	Hosting and Streaming
	Feature Details
	Hosting and Streaming At a Glance
	Web App Support
	Configuring the Hosting and Streaming Feature
	Browsing Your Content
	Managing Your App Assets
	Using the Amazon S3 Console
	Using AWS CLI

	Using a Custom Domain for Your Web App

	Viewing AWS Resources Provisioned for this Feature
	Quickstart App Details

	Conversational Bots
	Feature Details
	Conversational Bots At a Glance

	User Sign-in
	Feature Details
	User Sign-in Feature At a Glance
	Configuring User Sign-in
	User Sign-in Providers
	User Sign-in Requirement
	User Sign-in and AWS Identity and Access Management (IAM)

	Viewing AWS Resources Provisioned for this Feature
	Quickstart App Details

	User File Storage
	Feature Details
	User File Storage At a Glance
	Viewing AWS Resources Provisioned for this Feature

	Mobile Hub Project Service Region Hosting
	US East (Virginia)
	US East (Ohio)
	US West (California)
	US West (Oregon)
	EU West (Ireland)
	EU West (London)
	EU (Frankfurt)
	Asia Pacific (Tokyo)
	Asia Pacific (Seoul)
	Asia Pacific (Mumbai)
	Asia Pacific (Singapore)
	Asia Pacific (Sydney)
	South America (São Paulo)

	Mobile Hub Project Troubleshooting
	Cannot Import an API
	Cannot Import a NoSQL Table
	Cannot Import Multiple NoSQL Tables
	Cannot Import Push Credentials
	Build Artifacts Can't be Found
	Unable to Configure S3 Bucket During
	Administrator Required Error During Setup
	Account Setup Incomplete
	File Too Large to Import

	AWS Amplify Library for Web
	Get Started
	Overview
	Prerequisites
	Set Up Your Backend
	Connect to Your Backend
	Run Your App Locally

	Next Steps
	Deploy your app to the cloud
	Test Your App on Our Mobile Devices
	Add Features
	Learn more

	Add Analytics
	Basic Analytics Backend is Enabled for Your App
	Add Custom Analytics to Your App
	Next Steps

	Add Auth / User Sign-in
	Set Up Your Backend
	Connect to Your Backend
	Next Steps

	Access Your Database
	Set Up Your Backend
	Add columns and queries
	Use a cloud API to do CRUD operations
	Create your first Todo

	Connect to Your Backend
	Displaying todos from the cloud
	Saving todos to the cloud
	Next Steps

	Add Storage
	Set Up the Backend
	Connect to the Backend
	Upload a file
	Display an image
	Next Steps

	Access Your APIs
	Set Up Your Backend
	Create Your API
	Customize Your API Handler Logic

	Connect to Your Backend
	Make a Guess
	Next Steps

	Host Your Web App
	About Hosting and Streaming
	Managing Your App Assets
	Use the AWS CLI to Manage Your Bucket Contents
	Use the Amazon S3 Console to Manage Your Bucket
	Other Useful Functions in the AWS Mobile Hub Console

	Configure a Custom Domain for Your Web App

	AWS Mobile Hub Features
	AWS Mobile CLI Reference
	Installation and Usage
	Install AWS Mobile CLI
	Usage

	Summary of CLI Commands
	init
	configure
	pull
	push
	publish
	run
	console
	features
	enable
	disable
	configure
	invoke
	delete
	help

	AWS Mobile CLI User Credentials
	Overview
	Permissions
	Get Account User Credentials
	Get credentials for a new user
	Get credentials for an existing user

	AWS Amplify Library for React Native
	Get Started
	Overview
	Prerequisites
	Set Up Your Backend
	Connect to Your Backend
	Run Your App Locally

	Next Steps
	Add Features
	Learn more

	Add Analytics
	Basic Analytics Backend is Enabled for Your App
	Add Custom Analytics to Your App
	Next Steps

	Add Auth / User Sign-in
	Set Up Your Backend
	Connect to Your Backend
	Next Steps

	Access Your Database
	Set Up Your Backend
	Create a table
	Create a CRUD API

	Connect to Your Backend
	Save an item (create or update)
	Get a specific item
	Delete an item
	UI to exercise CRUD calls

	Next Steps

	Add Storage
	Set Up Your Backend
	Connect to Your Backend
	Upload a file
	Get a specific file
	List all files
	Delete a file

	Next Steps

	Access Your APIs
	Set Up Your Backend
	Quickly Test Your API From the CLI

	Connect to Your Backend
	Next Steps

	AWS Mobile Hub Features

